Mukherjee Anindita, Patel Bindi, Koga Hiroshi, Cuervo Ana Maria, Jenny Andreas
a Department of Developmental and Molecular Biology , Albert Einstein College of Medicine , New York , NY , USA.
b Institute for Aging Studies, Albert Einstein College of Medicine , New York , NY , USA.
Autophagy. 2016 Nov;12(11):1984-1999. doi: 10.1080/15548627.2016.1208887. Epub 2016 Aug 3.
Autophagy delivers cytosolic components to lysosomes for degradation and is thus essential for cellular homeostasis and to cope with different stressors. As such, autophagy counteracts various human diseases and its reduction leads to aging-like phenotypes. Macroautophagy (MA) can selectively degrade organelles or aggregated proteins, whereas selective degradation of single proteins has only been described for chaperone-mediated autophagy (CMA) and endosomal microautophagy (eMI). These 2 autophagic pathways are specific for proteins containing KFERQ-related targeting motifs. Using a KFERQ-tagged fluorescent biosensor, we have identified an eMI-like pathway in Drosophila melanogaster. We show that this biosensor localizes to late endosomes and lysosomes upon prolonged starvation in a KFERQ- and Hsc70-4- dependent manner. Furthermore, fly eMI requires endosomal multivesicular body formation mediated by ESCRT complex components. Importantly, induction of Drosophila eMI requires longer starvation than the induction of MA and is independent of the critical MA genes atg5, atg7, and atg12. Furthermore, inhibition of Tor signaling induces eMI in flies under nutrient rich conditions, and, as eMI in Drosophila also requires atg1 and atg13, our data suggest that these genes may have a novel, additional role in regulating eMI in flies. Overall, our data provide the first evidence for a novel, starvation-inducible, catabolic process resembling endosomal microautophagy in the Drosophila fat body.
自噬将胞质成分输送到溶酶体进行降解,因此对于细胞内稳态以及应对不同应激源至关重要。正因如此,自噬可对抗多种人类疾病,其功能减退会导致衰老样表型。巨自噬(MA)可选择性降解细胞器或聚集蛋白,而单一蛋白的选择性降解仅在伴侣介导的自噬(CMA)和内体微自噬(eMI)中有所描述。这两种自噬途径对含有KFERQ相关靶向基序的蛋白质具有特异性。利用一种带有KFERQ标签的荧光生物传感器,我们在黑腹果蝇中鉴定出了一种类似eMI的途径。我们发现,在长期饥饿时,这种生物传感器以依赖KFERQ和Hsc70 - 4的方式定位于晚期内体和溶酶体。此外,果蝇的eMI需要由ESCRT复合体成分介导的内体多囊泡体形成。重要的是,果蝇eMI的诱导比MA的诱导需要更长时间的饥饿,并且不依赖于关键的MA基因atg5、atg7和atg12。此外,在营养丰富的条件下,抑制Tor信号传导可在果蝇中诱导eMI,而且由于果蝇中的eMI也需要atg1和atg13,我们的数据表明这些基因可能在调节果蝇的eMI方面具有新的额外作用。总体而言,我们的数据首次证明了在果蝇脂肪体中存在一种类似于内体微自噬的新型、饥饿诱导的分解代谢过程。