Mojardín Laura, Salas Margarita
Instituto de Biología Molecular Eladio Viñuela (CSIC), Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Cantoblanco, Madrid, Spain
J Virol. 2016 Sep 29;90(20):9293-304. doi: 10.1128/JVI.01245-16. Print 2016 Oct 15.
The study of phage-host relationships is essential to understanding the dynamic of microbial systems. Here, we analyze genome-wide interactions of Bacillus subtilis and its lytic phage ϕ29 during the early stage of infection. Simultaneous high-resolution analysis of virus and host transcriptomes by deep RNA sequencing allowed us to identify differentially expressed bacterial genes. Phage ϕ29 induces significant transcriptional changes in about 0.9% (38/4,242) and 1.8% (76/4,242) of the host protein-coding genes after 8 and 16 min of infection, respectively. Gene ontology enrichment analysis clustered upregulated genes into several functional categories, such as nucleic acid metabolism (including DNA replication) and protein metabolism (including translation). Surprisingly, most of the transcriptional repressed genes were involved in the utilization of specific carbon sources such as ribose and inositol, and many contained promoter binding-sites for the catabolite control protein A (CcpA). Another interesting finding is the presence of previously uncharacterized antisense transcripts complementary to the well-known phage ϕ29 messenger RNAs that adds an additional layer to the viral transcriptome complexity.
The specific virus-host interactions that allow phages to redirect cellular machineries and energy resources to support the viral progeny production are poorly understood. This study provides, for the first time, an insight into the genome-wide transcriptional response of the Gram-positive model Bacillus subtilis to phage ϕ29 infection.
噬菌体-宿主关系的研究对于理解微生物系统的动态至关重要。在此,我们分析了枯草芽孢杆菌及其裂解性噬菌体ϕ29在感染早期的全基因组相互作用。通过深度RNA测序对病毒和宿主转录组进行同步高分辨率分析,使我们能够鉴定出差异表达的细菌基因。噬菌体ϕ29在感染8分钟和16分钟后,分别诱导宿主蛋白质编码基因中约0.9%(38/4242)和1.8%(76/4242)发生显著的转录变化。基因本体富集分析将上调基因聚类到几个功能类别中,如核酸代谢(包括DNA复制)和蛋白质代谢(包括翻译)。令人惊讶的是,大多数转录受抑制的基因参与了特定碳源如核糖和肌醇的利用,并且许多基因含有分解代谢物控制蛋白A(CcpA)的启动子结合位点。另一个有趣的发现是存在与著名的噬菌体ϕ29信使RNA互补的先前未表征的反义转录本,这为病毒转录组的复杂性增加了额外的一层。
噬菌体如何重定向细胞机制和能量资源以支持病毒后代产生的特定病毒-宿主相互作用尚不清楚。本研究首次深入了解了革兰氏阳性模式菌枯草芽孢杆菌对噬菌体ϕ29感染的全基因组转录反应。