Fujisawa Jun-Ichi, Nagata Morio
Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan; Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan.
Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan.
Biophysics (Nagoya-shi). 2014 Jun 7;10:25-34. doi: 10.2142/biophysics.10.25. eCollection 2014.
Bacteriochlorophylls (BChls) play an important role as light harvesters in photosynthetic bacteria. Interestingly, bacteriochlorophylls (BChls) a, b, and g selectively tune their visible (Qx) and near IR (Qy) absorption bands by the substituent changes. In this paper, we theoretically study the mechanism for the selective control of the absorption bands. Density functional theory (DFT) and time-dependent DFT (TD-DFT) and four-orbital model analyses reveal that the selective red-shift of the Qy band with the substituent change from BChl a to b occurs with the lower-energy shift of the (HOMO, LUMO) excited state directly induced by the molecular-orbital energy changes. In contrast, the Qx band hardly shifts by the cancellation between the higher- and lower-energy shifts of the (HOMO-1, LUMO) excited state directly induced by the molecular-orbital energy changes and configuration interaction, respectively. On the other hand, with the substituent changes from BChl a to g, the Qx band selectively blue-shifts by the larger higher-energy shift of the (HOMO-1, LUMO) excited state directly induced by the molecular-orbital energy shifts than the lower-energy shift due to the configuration interaction. In contrast, the Qy band hardly shifts by the cancellation between the higher- and lower-energy shifts of the (HOMO, LUMO) excited state directly induced by the molecular-orbital energy changes and configuration interaction, respectively. Our work provides the important knowledge for understanding how nature controls the light-absorption properties of the BChl dyes, which might be also useful for design of porphyrinoid chromophores.
细菌叶绿素(BChls)在光合细菌中作为光捕获剂发挥着重要作用。有趣的是,细菌叶绿素a、b和g通过取代基变化选择性地调节其可见(Qx)和近红外(Qy)吸收带。在本文中,我们从理论上研究了吸收带选择性控制的机制。密度泛函理论(DFT)、含时密度泛函理论(TD-DFT)和四轨道模型分析表明,随着取代基从细菌叶绿素a变为b,Qy带的选择性红移是由分子轨道能量变化直接诱导的(最高占据分子轨道,最低未占分子轨道)激发态的低能量位移引起的。相比之下,由于分子轨道能量变化和组态相互作用分别直接诱导的(最高占据分子轨道-1,最低未占分子轨道)激发态的高能量和低能量位移相互抵消,Qx带几乎没有位移。另一方面,随着取代基从细菌叶绿素a变为g,由于分子轨道能量位移直接诱导的(最高占据分子轨道-1,最低未占分子轨道)激发态的高能量位移比组态相互作用引起的低能量位移大,Qx带选择性蓝移。相比之下,由于分子轨道能量变化和组态相互作用分别直接诱导的(最高占据分子轨道,最低未占分子轨道)激发态的高能量和低能量位移相互抵消,Qy带几乎没有位移。我们的工作为理解自然界如何控制细菌叶绿素染料的光吸收特性提供了重要知识,这可能对卟啉类发色团的设计也有用。