Suppr超能文献

相似文献

1
Dissecting the Influence of Protein Flexibility on the Location and Thermodynamic Profile of Explicit Water Molecules in Protein-Ligand Binding.
J Chem Theory Comput. 2016 Sep 13;12(9):4578-92. doi: 10.1021/acs.jctc.6b00411. Epub 2016 Aug 18.
2
Calculation of Thermodynamic Properties of Bound Water Molecules.
Methods Mol Biol. 2018;1762:389-402. doi: 10.1007/978-1-4939-7756-7_19.
3
WATsite2.0 with PyMOL Plugin: Hydration Site Prediction and Visualization.
Methods Mol Biol. 2017;1611:123-134. doi: 10.1007/978-1-4939-7015-5_10.
4
Efficient and Accurate Hydration Site Profiling for Enclosed Binding Sites.
J Chem Inf Model. 2018 Nov 26;58(11):2183-2188. doi: 10.1021/acs.jcim.8b00544. Epub 2018 Oct 24.
5
AquaMMapS: An Alternative Tool to Monitor the Role of Water Molecules During Protein-Ligand Association.
ChemMedChem. 2018 Mar 20;13(6):522-531. doi: 10.1002/cmdc.201700564. Epub 2018 Jan 25.
6
Carbohydrate-binding proteins: Dissecting ligand structures through solvent environment occupancy.
J Phys Chem B. 2009 Jun 25;113(25):8717-24. doi: 10.1021/jp901196n.
7
Accounting for the Central Role of Interfacial Water in Protein-Ligand Binding Free Energy Calculations.
J Chem Theory Comput. 2020 Dec 8;16(12):7883-7894. doi: 10.1021/acs.jctc.0c00785. Epub 2020 Nov 18.
9
WaterKit: Thermodynamic Profiling of Protein Hydration Sites.
J Chem Theory Comput. 2023 May 9;19(9):2535-2556. doi: 10.1021/acs.jctc.2c01087. Epub 2023 Apr 24.
10
WATsite: hydration site prediction program with PyMOL interface.
J Comput Chem. 2014 Jun 15;35(16):1255-60. doi: 10.1002/jcc.23616. Epub 2014 Apr 22.

引用本文的文献

1
Accelerated Hydration Site Localization and Thermodynamic Profiling.
J Chem Inf Model. 2025 Mar 24;65(6):2794-2805. doi: 10.1021/acs.jcim.4c02349. Epub 2025 Feb 28.
2
Instantaneous generation of protein hydration properties from static structures.
Commun Chem. 2020 Dec 11;3(1):188. doi: 10.1038/s42004-020-00435-5.
4
Large-Scale Ligand Perturbations of the Protein Conformational Landscape Reveal State-Specific Interaction Hotspots.
J Med Chem. 2022 Oct 27;65(20):13692-13704. doi: 10.1021/acs.jmedchem.2c00708. Epub 2022 Aug 15.
5
Role of Displacing Confined Solvent in the Conformational Equilibrium of β-Cyclodextrin.
J Phys Chem B. 2019 Oct 10;123(40):8378-8386. doi: 10.1021/acs.jpcb.9b07028. Epub 2019 Oct 1.

本文引用的文献

1
The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities.
Expert Opin Drug Discov. 2015 May;10(5):449-61. doi: 10.1517/17460441.2015.1032936. Epub 2015 Apr 2.
2
Analysis of factors influencing hydration site prediction based on molecular dynamics simulations.
J Chem Inf Model. 2014 Oct 27;54(10):2987-95. doi: 10.1021/ci500426q. Epub 2014 Oct 7.
4
Application of MM-GB/SA and WaterMap to SRC Kinase Inhibitor Potency Prediction.
ACS Med Chem Lett. 2012 Jan 6;3(2):94-9. doi: 10.1021/ml200222u. eCollection 2012 Feb 9.
5
WATsite: hydration site prediction program with PyMOL interface.
J Comput Chem. 2014 Jun 15;35(16):1255-60. doi: 10.1002/jcc.23616. Epub 2014 Apr 22.
6
PharmDock: a pharmacophore-based docking program.
J Cheminform. 2014 Apr 16;6:14. doi: 10.1186/1758-2946-6-14. eCollection 2014.
7
Water networks contribute to enthalpy/entropy compensation in protein-ligand binding.
J Am Chem Soc. 2013 Oct 16;135(41):15579-84. doi: 10.1021/ja4075776. Epub 2013 Oct 3.
8
Water network perturbation in ligand binding: adenosine A(2A) antagonists as a case study.
J Chem Inf Model. 2013 Jul 22;53(7):1700-13. doi: 10.1021/ci4001458. Epub 2013 Jun 14.
9
Protein pharmacophore selection using hydration-site analysis.
J Chem Inf Model. 2012 Apr 23;52(4):1046-60. doi: 10.1021/ci200620h. Epub 2012 Mar 26.
10
Mechanism of the hydrophobic effect in the biomolecular recognition of arylsulfonamides by carbonic anhydrase.
Proc Natl Acad Sci U S A. 2011 Nov 1;108(44):17889-94. doi: 10.1073/pnas.1114107108. Epub 2011 Oct 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验