Nieuwenhuizen W, Traas D W
Gaubius Institute TNO, Leiden, The Netherlands.
Thromb Haemost. 1989 Apr 25;61(2):208-10.
At least four molecular forms of plasminogen are known. Two of those forms have glutamic acid at their amino-terminal end, and are designated as glu-plasminogen. The other two have lysine, methionine and/or valine as amino-terminal amino acid and are collectively designated as lys-plasminogen. Two subforms (I and II) each of glu- and lys-plasminogen exist. The I-forms are glycosylated at asn-288 and thr-345, whereas the II-forms are only glycosylated at thr-345. In a previous publication (Thromb Haemostas 1984; 52: 347-349) we have described the separation of the I- and II-forms of plasminogen in lysine-Sepharose in phosphate buffers. Now we have combined those findings with the differential affinity of glu- and lys-plasminogen for aminohexyl-Sepharose through their aminohexyl-sites, recently described by Christensen (Biochem J 1984; 223: 431-421). Acid/urea electrophoresis, end-group determination and carbohydrate analysis show that the combination of affinity chromatography on lysine-Sepharose in phosphate buffers, and on aminohexyl-Sepharose provides an efficient procedure to separate the four molecular forms of plasminogen.
已知纤溶酶原至少有四种分子形式。其中两种形式在其氨基末端有谷氨酸,被指定为谷氨酰胺纤溶酶原。另外两种以赖氨酸、甲硫氨酸和/或缬氨酸作为氨基末端氨基酸,统称为赖氨酸纤溶酶原。谷氨酰胺纤溶酶原和赖氨酸纤溶酶原各存在两种亚型(I型和II型)。I型在天冬酰胺-288和苏氨酸-345处糖基化,而II型仅在苏氨酸-345处糖基化。在之前的一篇出版物(《血栓与止血》1984年;52: 347 - 349)中,我们描述了在磷酸盐缓冲液中赖氨酸琼脂糖上纤溶酶原I型和II型的分离。现在我们将这些发现与谷氨酰胺纤溶酶原和赖氨酸纤溶酶原通过其氨基己基位点对氨基己基琼脂糖的不同亲和力相结合,这是克里斯蒂安森最近描述的(《生物化学杂志》1984年;223: 431 - 421)。酸/尿素电泳、端基测定和碳水化合物分析表明,在磷酸盐缓冲液中的赖氨酸琼脂糖上以及在氨基己基琼脂糖上进行亲和层析相结合,提供了一种分离纤溶酶原四种分子形式的有效方法。