Suppr超能文献

自闭症谱系儿童会根据不稳定的环境更新自己的行为。

Children on the autism spectrum update their behaviour in response to a volatile environment.

机构信息

Department of Experimental Psychology, University of Oxford, UK.

Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, University College London, UK.

出版信息

Dev Sci. 2017 Sep;20(5). doi: 10.1111/desc.12435. Epub 2016 Aug 6.

Abstract

Typical adults can track reward probabilities across trials to estimate the volatility of the environment and use this information to modify their learning rate (Behrens et al., 2007). In a stable environment, it is advantageous to take account of outcomes over many trials, whereas in a volatile environment, recent experience should be more strongly weighted than distant experience. Recent predictive coding accounts of autism propose that autistic individuals will demonstrate atypical updating of their behaviour in response to the statistics of the reward environment. To rigorously test this hypothesis, we administered a developmentally appropriate version of Behrens et al.'s (2007) task to 34 cognitively able children on the autism spectrum aged between 6 and 14 years, 32 age- and ability-matched typically developing children and 19 typical adults. Participants were required to choose between a green and a blue pirate chest, each associated with a randomly determined reward value between 0 and 100 points, with a combined total of 100 points. On each trial, the reward was given for one stimulus only. In the stable condition, the ratio of the blue or green response being rewarded was fixed at 75:25. In the volatile condition, the ratio alternated between 80:20 and 20:80 every 20 trials. We estimated the learning rate for each participant by fitting a delta rule model and compared this rate across conditions and groups. All groups increased their learning rate in the volatile condition compared to the stable condition. Unexpectedly, there was no effect of group and no interaction between group and condition. Thus, autistic children used information about the statistics of the reward environment to guide their decisions to a similar extent as typically developing children and adults. These results help constrain predictive coding accounts of autism by demonstrating that autism is not characterized by uniform differences in the weighting of prediction error.

摘要

典型的成年人可以在试验中跟踪奖励概率,以估计环境的波动性,并利用这些信息来调整他们的学习率(Behrens 等人,2007 年)。在稳定的环境中,考虑多次试验的结果是有利的,而在不稳定的环境中,最近的经验应该比遥远的经验更受重视。最近关于自闭症的预测编码解释认为,自闭症患者在对奖励环境的统计数据做出反应时,会表现出行为更新的非典型性。为了严格检验这一假设,我们对 34 名年龄在 6 至 14 岁之间的自闭症谱系认知能力正常的儿童、32 名年龄和能力匹配的典型发育儿童和 19 名典型成年人进行了 Behrens 等人(2007 年)任务的发展适当版本的测试。参与者被要求在一个绿色和一个蓝色海盗宝箱之间进行选择,每个宝箱都与一个随机确定的奖励值(0 到 100 分之间)相关联,总共有 100 分。在每次试验中,只有一个刺激会得到奖励。在稳定条件下,蓝色或绿色反应得到奖励的比例固定在 75:25。在不稳定条件下,每 20 次试验交替出现 80:20 和 20:80 的比例。我们通过拟合一个差分规则模型来估计每个参与者的学习率,并比较了条件和组之间的学习率。所有组在不稳定条件下的学习率都高于稳定条件。出乎意料的是,组间没有差异,也没有组间与条件间的相互作用。因此,自闭症儿童在引导他们的决策时,会像典型发育儿童和成年人一样,利用奖励环境统计信息的程度相似。这些结果通过证明自闭症不是以预测误差权重的统一差异为特征,有助于限制自闭症的预测编码解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed42/5600083/d4a76d92674e/DESC-20-na-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验