Chen Guifen, Manson Daniel, Cacucci Francesca, Wills Thomas Joseph
Department of Neuroscience, Physiology, and Pharmacology, UCL, Gower Street, London WC1E 6BT, UK.
Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK; Centre for Mathematics and Physics in the Life Sciences and Experimental Biology, UCL, Gower Place, London WC1E 6BT, UK.
Curr Biol. 2016 Sep 12;26(17):2335-42. doi: 10.1016/j.cub.2016.06.043. Epub 2016 Aug 4.
Grid cells are spatially modulated neurons within the medial entorhinal cortex whose firing fields are arranged at the vertices of tessellating equilateral triangles [1]. The exquisite periodicity of their firing has led to the suggestion that they represent a path integration signal, tracking the organism's position by integrating speed and direction of movement [2-10]. External sensory inputs are required to reset any errors that the path integrator would inevitably accumulate. Here we probe the nature of the external sensory inputs required to sustain grid firing, by recording grid cells as mice explore familiar environments in complete darkness. The absence of visual cues results in a significant disruption of grid cell firing patterns, even when the quality of the directional information provided by head direction cells is largely preserved. Darkness alters the expression of velocity signaling within the entorhinal cortex, with changes evident in grid cell firing rate and the local field potential theta frequency. Short-term (<1.5 s) spike timing relationships between grid cell pairs are preserved in the dark, indicating that network patterns of excitatory and inhibitory coupling between grid cells exist independently of visual input and of spatially periodic firing. However, we find no evidence of preserved hexagonal symmetry in the spatial firing of single grid cells at comparable short timescales. Taken together, these results demonstrate that visual input is required to sustain grid cell periodicity and stability in mice and suggest that grid cells in mice cannot perform accurate path integration in the absence of reliable visual cues.
网格细胞是内嗅皮层中的空间调制神经元,其放电场排列在镶嵌等边三角形的顶点处[1]。它们放电的精确周期性表明它们代表一种路径整合信号,通过整合运动速度和方向来追踪生物体的位置[2 - 10]。需要外部感觉输入来重置路径积分器不可避免会积累的任何误差。在这里,我们通过在小鼠于完全黑暗中探索熟悉环境时记录网格细胞,来探究维持网格放电所需的外部感觉输入的性质。即使头部方向细胞提供的方向信息质量在很大程度上得以保留,视觉线索的缺失仍会导致网格细胞放电模式的显著破坏。黑暗改变了内嗅皮层内速度信号的表达,在网格细胞放电率和局部场电位θ频率上有明显变化。网格细胞对之间的短期(<1.5秒)尖峰时间关系在黑暗中得以保留,这表明网格细胞之间兴奋和抑制性耦合的网络模式独立于视觉输入和空间周期性放电而存在。然而,我们没有发现单个网格细胞在相当短的时间尺度上的空间放电中保留六边形对称性的证据。综上所述,这些结果表明视觉输入是维持小鼠网格细胞周期性和稳定性所必需的,并表明在没有可靠视觉线索的情况下,小鼠的网格细胞无法进行精确的路径整合。