Suppr超能文献

纳米级电化学图案化揭示了石墨表面儿茶酚氧化的活性位点。

Nanoscale electrochemical patterning reveals the active sites for catechol oxidation at graphite surfaces.

机构信息

Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom.

出版信息

J Am Chem Soc. 2012 Dec 19;134(50):20246-9. doi: 10.1021/ja3095894. Epub 2012 Dec 11.

Abstract

Graphite-based electrodes (graphite, graphene, and nanotubes) are used widely in electrochemistry, and there is a long-standing view that graphite step edges are needed to catalyze many reactions, with the basal surface considered to be inert. In the present work, this model was tested directly for the first time using scanning electrochemical cell microscopy reactive patterning and shown to be incorrect. For the electro-oxidation of dopamine as a model process, the reaction rate was measured at high spatial resolution across a surface of highly oriented pyrolytic graphite. Oxidation products left behind in a pattern defined by the scanned electrochemical cell served as surface-site markers, allowing the electrochemical activity to be correlated directly with the graphite structure on the nanoscale. This process produced tens of thousands of electrochemical measurements at different locations across the basal surface, unambiguously revealing it to be highly electrochemically active, with step edges providing no enhanced activity. This new model of graphite electrodes has significant implications for the design of carbon-based biosensors, and the results are additionally important for understanding electrochemical processes on related sp(2)-hybridized materials such as pristine graphene and nanotubes.

摘要

基于石墨的电极(石墨、石墨烯和碳纳米管)在电化学中得到了广泛的应用,长期以来一直认为石墨台阶边缘对于催化许多反应是必需的,而基面被认为是惰性的。在本工作中,首次使用扫描电化学池显微镜的反应性图案化直接对该模型进行了测试,结果表明该模型不正确。对于多巴胺的电氧化作为一个模型过程,在高取向热解石墨表面上以高空间分辨率测量了反应速率。在扫描电化学池定义的图案中留下的氧化产物作为表面位标记,允许将电化学活性与纳米尺度上的石墨结构直接相关联。该过程在基底表面的不同位置产生了数万次电化学测量,明确揭示了基底表面具有高度的电化学活性,而台阶边缘没有提供增强的活性。这种新的石墨电极模型对基于碳的生物传感器的设计具有重要意义,并且对于理解相关 sp(2)杂化材料(如原始石墨烯和碳纳米管)上的电化学过程也很重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验