Suppr超能文献

通过噪声多细胞梯度感知实现集体趋化作用

Collective Chemotaxis through Noisy Multicellular Gradient Sensing.

作者信息

Varennes Julien, Han Bumsoo, Mugler Andrew

机构信息

Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana.

Schools of Mechanical Engineering and Biomedical Engineering, Purdue University, West Lafayette, Indiana; Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana.

出版信息

Biophys J. 2016 Aug 9;111(3):640-649. doi: 10.1016/j.bpj.2016.06.040.

Abstract

Collective cell migration in response to a chemical cue occurs in many biological processes such as morphogenesis and cancer metastasis. Clusters of migratory cells in these systems are capable of responding to gradients of <1% difference in chemical concentration across a cell length. Multicellular systems are extremely sensitive to their environment, and although the limits to multicellular sensing are becoming known, how this information leads to coherent migration remains poorly understood. We develop a computational model of multicellular sensing and migration in which groups of cells collectively measure noisy chemical gradients. The output of the sensing process is coupled to the polarization of individual cells to model migratory behavior. Through the use of numerical simulations, we find that larger clusters of cells detect the gradient direction with higher precision and thus achieve stronger polarization bias, but larger clusters also induce more drag on collective motion. The trade-off between these two effects leads to an optimal cluster size for most efficient migration. We discuss how our model could be validated using simple, phenomenological experiments.

摘要

响应化学信号的集体细胞迁移发生在许多生物过程中,如形态发生和癌症转移。在这些系统中,迁移细胞簇能够响应跨细胞长度化学浓度差异小于1%的梯度。多细胞系统对其环境极其敏感,尽管多细胞感知的极限正在为人所知,但这种信息如何导致协调一致的迁移仍知之甚少。我们开发了一个多细胞感知和迁移的计算模型,其中细胞群集体测量有噪声的化学梯度。感知过程的输出与单个细胞的极化相耦合,以模拟迁移行为。通过数值模拟,我们发现更大的细胞簇能以更高的精度检测梯度方向,从而实现更强的极化偏差,但更大的细胞簇也会对集体运动产生更大的阻力。这两种效应之间的权衡导致了最有效迁移的最佳簇大小。我们讨论了如何使用简单的现象学实验来验证我们的模型。

相似文献

1
Collective Chemotaxis through Noisy Multicellular Gradient Sensing.
Biophys J. 2016 Aug 9;111(3):640-649. doi: 10.1016/j.bpj.2016.06.040.
2
Role of spatial averaging in multicellular gradient sensing.
Phys Biol. 2016 May 20;13(3):035004. doi: 10.1088/1478-3975/13/3/035004.
3
Emergent versus Individual-Based Multicellular Chemotaxis.
Phys Rev Lett. 2017 Nov 3;119(18):188101. doi: 10.1103/PhysRevLett.119.188101. Epub 2017 Oct 30.
4
Cell-cell communication enhances the capacity of cell ensembles to sense shallow gradients during morphogenesis.
Proc Natl Acad Sci U S A. 2016 Feb 9;113(6):E679-88. doi: 10.1073/pnas.1516503113. Epub 2016 Jan 20.
5
Sense and Sensitivity: Physical Limits to Multicellular Sensing, Migration, and Drug Response.
Mol Pharm. 2016 Jul 5;13(7):2224-32. doi: 10.1021/acs.molpharmaceut.5b00899. Epub 2016 Feb 16.
6
Evolution of multicellularity by collective integration of spatial information.
Elife. 2020 Oct 16;9:e56349. doi: 10.7554/eLife.56349.
7
Cell-to-cell variation sets a tissue-rheology-dependent bound on collective gradient sensing.
Proc Natl Acad Sci U S A. 2017 Nov 21;114(47):E10074-E10082. doi: 10.1073/pnas.1712309114. Epub 2017 Nov 7.
8
Emergent Collective Chemotaxis without Single-Cell Gradient Sensing.
Phys Rev Lett. 2016 Mar 4;116(9):098101. doi: 10.1103/PhysRevLett.116.098101. Epub 2016 Mar 3.
9
Testing the limits of gradient sensing.
PLoS Comput Biol. 2017 Feb 16;13(2):e1005386. doi: 10.1371/journal.pcbi.1005386. eCollection 2017 Feb.
10
Collective effects in flow-driven cell migration.
Phys Rev E. 2023 Nov;108(5-1):054406. doi: 10.1103/PhysRevE.108.054406.

引用本文的文献

1
Galvanotactic directionality of cell groups depends on group size.
Proc Natl Acad Sci U S A. 2025 May 27;122(21):e2416440122. doi: 10.1073/pnas.2416440122. Epub 2025 May 20.
2
Persistent pseudopod splitting is an effective chemotaxis strategy in shallow gradients.
Proc Natl Acad Sci U S A. 2025 May 13;122(19):e2502368122. doi: 10.1073/pnas.2502368122. Epub 2025 May 8.
3
Galvanotactic directionality of cell groups depends on group size.
bioRxiv. 2024 Aug 13:2024.08.13.607794. doi: 10.1101/2024.08.13.607794.
4
Decoding physical principles of cell migration under controlled environment using microfluidics.
Biophys Rev (Melville). 2024 Jul 29;5(3):031302. doi: 10.1063/5.0199161. eCollection 2024 Sep.
5
Collective directional migration drives the formation of heteroclonal cancer cell clusters.
Mol Oncol. 2023 Sep;17(9):1699-1725. doi: 10.1002/1878-0261.13369. Epub 2023 Jan 28.
6
The role of cell geometry and cell-cell communication in gradient sensing.
PLoS Comput Biol. 2022 Mar 14;18(3):e1009552. doi: 10.1371/journal.pcbi.1009552. eCollection 2022 Mar.
8
Physical constraints on accuracy and persistence during breast cancer cell chemotaxis.
PLoS Comput Biol. 2019 Apr 10;15(4):e1006961. doi: 10.1371/journal.pcbi.1006961. eCollection 2019 Apr.
9
Minimal Network Topologies for Signal Processing during Collective Cell Chemotaxis.
Biophys J. 2018 Jun 19;114(12):2986-2999. doi: 10.1016/j.bpj.2018.04.020.
10
Collective gradient sensing and chemotaxis: modeling and recent developments.
J Phys Condens Matter. 2018 Jun 6;30(22):223001. doi: 10.1088/1361-648X/aabd9f. Epub 2018 Apr 12.

本文引用的文献

1
Collective Signal Processing in Cluster Chemotaxis: Roles of Adaptation, Amplification, and Co-attraction in Collective Guidance.
PLoS Comput Biol. 2016 Jul 1;12(7):e1005008. doi: 10.1371/journal.pcbi.1005008. eCollection 2016 Jul.
2
Molecular-Level Tuning of Cellular Autonomy Controls the Collective Behaviors of Cell Populations.
Cell Syst. 2015 Nov 25;1(5):349-60. doi: 10.1016/j.cels.2015.10.012.
3
Modelling collective cell migration of neural crest.
Curr Opin Cell Biol. 2016 Oct;42:22-28. doi: 10.1016/j.ceb.2016.03.023. Epub 2016 Apr 13.
4
Emergent Collective Chemotaxis without Single-Cell Gradient Sensing.
Phys Rev Lett. 2016 Mar 4;116(9):098101. doi: 10.1103/PhysRevLett.116.098101. Epub 2016 Mar 3.
5
Sense and Sensitivity: Physical Limits to Multicellular Sensing, Migration, and Drug Response.
Mol Pharm. 2016 Jul 5;13(7):2224-32. doi: 10.1021/acs.molpharmaceut.5b00899. Epub 2016 Feb 16.
6
Cell-cell communication enhances the capacity of cell ensembles to sense shallow gradients during morphogenesis.
Proc Natl Acad Sci U S A. 2016 Feb 9;113(6):E679-88. doi: 10.1073/pnas.1516503113. Epub 2016 Jan 20.
7
Limits to the precision of gradient sensing with spatial communication and temporal integration.
Proc Natl Acad Sci U S A. 2016 Feb 9;113(6):E689-95. doi: 10.1073/pnas.1509597112. Epub 2016 Jan 20.
8
Collective cell migration in development.
J Cell Biol. 2016 Jan 18;212(2):143-55. doi: 10.1083/jcb.201508047.
9
Models, measurement and inference in epithelial tissue dynamics.
Math Biosci Eng. 2015 Dec;12(6):1321-40. doi: 10.3934/mbe.2015.12.1321.
10
Three-dimensional chemotaxis-driven aggregation of tumor cells.
Sci Rep. 2015 Oct 16;5:15205. doi: 10.1038/srep15205.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验