Roehlecke Cora, Valtink Monika, Frenzel Annika, Goetze Doris, Knels Lilla, Morawietz Henning, Funk Richard H W
Institute of Anatomy, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
Division of Vascular Endothelium and Microcirculation, Medical Clinic III, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
Graefes Arch Clin Exp Ophthalmol. 2016 Dec;254(12):2361-2372. doi: 10.1007/s00417-016-3463-2. Epub 2016 Aug 12.
Intracellular formation of advanced glycation end products (AGEs) is a crucial pathological process in retinal diseases such as age-related macular degeneration (AMD) or diabetic retinopathy (DR). Glyoxal is a physiological metabolite produced during formation of AGEs and has also been shown to derive from photodegraded bisretinoid fluorophores in aging retinal pigment epithelial (RPE) cells.
Flow cytometry was combined with either: 1) immunocytochemical staining to detect glyoxal induced formation of N-carboxymethyllysine (CML)-modifications of intracellular proteins (AGEs) and changes in the production of stress response proteins; or 2) vital staining to determine apoptosis rates (annexin V binding), formation of intracellular reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and changes in intracellular pH upon treatment of cells with glyoxal. The percentage of apoptotic cells was further quantified by flow cytometry after staining of fixed cells with propidium iodide to determine cells with a subdiploid (fragmented) DNA content. Apoptosis related activation of caspase 3 was determined by Western blotting. Glyoxal induced changes in VEGF-A mRNA expression and protein production were determined by real-time PCR and by flow cytometry after immunocytochemical staining.
Increasing glyoxal concentrations resulted in enhanced formation of AGEs, such as CML modifications of proteins. This was associated with elevated levels of intracellular reactive oxygen species, a depolarized MMP, and a decreased intracellular pH, resulting in an increased number of apoptotic cells. Apoptosis related caspase 3 activation increased in a dose dependent manner after glyoxal incubation. In consequence, the cells activated compensatory mechanisms and increased the levels of the anti-oxidative and stress-related proteins heme oxygenase-1, osteopontin, heat shock protein 27, copper/zinc superoxide dismutase, manganese superoxide dismutase, and cathepsin D. Furthermore, VEGF-A mRNA expression and VEGF-A protein production were significantly increased after incubation with glyoxal in ARPE-19 cells.
The glyoxal-induced oxidative stress and apoptosis in ARPE-19 cells may provide a suitable in vitro model for studying RPE cellular reactions to AGEs that occur in AMD or in DR.
晚期糖基化终产物(AGEs)的细胞内形成是视网膜疾病如年龄相关性黄斑变性(AMD)或糖尿病性视网膜病变(DR)中的关键病理过程。乙二醛是AGEs形成过程中产生的一种生理代谢产物,并且也已显示其来源于衰老视网膜色素上皮(RPE)细胞中光降解的双视黄醛荧光团。
流式细胞术与以下方法相结合:1)免疫细胞化学染色,以检测乙二醛诱导的细胞内蛋白质N-羧甲基赖氨酸(CML)修饰(AGEs)的形成以及应激反应蛋白产生的变化;或2)活细胞染色,以确定细胞经乙二醛处理后的凋亡率(膜联蛋白V结合)、细胞内活性氧(ROS)的形成、线粒体膜电位(MMP)以及细胞内pH值的变化。在用碘化丙啶对固定细胞进行染色以确定具有亚二倍体(片段化)DNA含量的细胞后,通过流式细胞术进一步定量凋亡细胞的百分比。通过蛋白质印迹法测定凋亡相关的半胱天冬酶3的激活。通过实时PCR以及免疫细胞化学染色后的流式细胞术测定乙二醛诱导的VEGF-A mRNA表达和蛋白质产生的变化。
乙二醛浓度的增加导致AGEs的形成增强,例如蛋白质的CML修饰。这与细胞内活性氧水平升高、MMP去极化以及细胞内pH值降低相关,导致凋亡细胞数量增加。乙二醛孵育后,凋亡相关的半胱天冬酶3激活呈剂量依赖性增加。因此,细胞激活了补偿机制并增加了抗氧化和应激相关蛋白血红素加氧酶-1、骨桥蛋白、热休克蛋白27、铜/锌超氧化物歧化酶、锰超氧化物歧化酶和组织蛋白酶D的水平。此外,在ARPE-19细胞中用乙二醛孵育后,VEGF-A mRNA表达和VEGF-A蛋白质产生显著增加。
乙二醛诱导的ARPE-19细胞氧化应激和凋亡可能为研究RPE细胞对AMD或DR中发生的AGEs的反应提供合适的体外模型。