Binder Dennis, Frohwitter Jonas, Mahr Regina, Bier Claus, Grünberger Alexander, Loeschcke Anita, Peters-Wendisch Petra, Kohlheyer Dietrich, Pietruszka Jörg, Frunzke Julia, Jaeger Karl-Erich, Wendisch Volker F, Drepper Thomas
Institute of Molecular Enzyme Technology, Heinrich Heine University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany.
Chair of Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, Bielefeld, Germany.
Appl Environ Microbiol. 2016 Sep 30;82(20):6141-6149. doi: 10.1128/AEM.01457-16. Print 2016 Oct 15.
Precise control of microbial gene expression resulting in a defined, fast, and homogeneous response is of utmost importance for synthetic bio(techno)logical applications. However, even broadly applied biotechnological workhorses, such as Corynebacterium glutamicum, for which induction of recombinant gene expression commonly relies on the addition of appropriate inducer molecules, perform moderately in this respect. Light offers an alternative to accurately control gene expression, as it allows for simple triggering in a noninvasive fashion with unprecedented spatiotemporal resolution. Thus, optogenetic switches are promising tools to improve the controllability of existing gene expression systems. In this regard, photocaged inducers, whose activities are initially inhibited by light-removable protection groups, represent one of the most valuable photoswitches for microbial gene expression. Here, we report on the evaluation of photocaged isopropyl-β-d-thiogalactopyranoside (IPTG) as a light-responsive control element for the frequently applied tac-based expression module in C. glutamicum In contrast to conventional IPTG, the photocaged inducer mediates a tightly controlled, strong, and homogeneous expression response upon short exposure to UV-A light. To further demonstrate the unique potential of photocaged IPTG for the optimization of production processes in C. glutamicum, the optogenetic switch was finally used to improve biosynthesis of the growth-inhibiting sesquiterpene (+)-valencene, a flavoring agent and aroma compound precursor in food industry. The variation in light intensity as well as the time point of light induction proved crucial for efficient production of this toxic compound.
Optogenetic tools are light-responsive modules that allow for a simple triggering of cellular functions with unprecedented spatiotemporal resolution and in a noninvasive fashion. Specifically, light-controlled gene expression exhibits an enormous potential for various synthetic bio(techno)logical purposes. Before our study, poor inducibility, together with phenotypic heterogeneity, was reported for the IPTG-mediated induction of lac-based gene expression in Corynebacterium glutamicum By applying photocaged IPTG as a synthetic inducer, however, these drawbacks could be almost completely abolished. Especially for increasing numbers of parallelized expression cultures, noninvasive and spatiotemporal light induction qualifies for a precise, homogeneous, and thus higher-order control to fully automatize or optimize future biotechnological applications.
精确控制微生物基因表达以产生明确、快速且均匀的反应对于合成生物技术应用至关重要。然而,即使是广泛应用的生物技术主力菌株,如谷氨酸棒杆菌,其重组基因表达的诱导通常依赖于添加合适的诱导剂分子,但在这方面表现一般。光提供了一种精确控制基因表达的替代方法,因为它能够以无创方式、以前所未有的时空分辨率进行简单触发。因此,光遗传学开关是改善现有基因表达系统可控性的有前景的工具。在这方面,光笼化诱导剂的活性最初被光可去除的保护基团抑制,它是微生物基因表达最有价值的光开关之一。在此,我们报告了对光笼化异丙基-β-D-硫代半乳糖苷(IPTG)作为谷氨酸棒杆菌中常用的基于tac的表达模块的光响应控制元件的评估。与传统IPTG不同,光笼化诱导剂在短时间暴露于UV-A光后介导了严格控制、强烈且均匀的表达反应。为了进一步证明光笼化IPTG在优化谷氨酸棒杆菌生产过程中的独特潜力,最终使用光遗传学开关来改善生长抑制性倍半萜(+)-瓦伦烯的生物合成,(+)-瓦伦烯是食品工业中的调味剂和香气化合物前体。光强度的变化以及光诱导的时间点被证明对这种有毒化合物的高效生产至关重要。
光遗传学工具是光响应模块,能够以前所未有的时空分辨率、以无创方式简单触发细胞功能。具体而言,光控基因表达在各种合成生物技术目的方面具有巨大潜力。在我们的研究之前,据报道谷氨酸棒杆菌中IPTG介导的基于lac的基因表达诱导性差且存在表型异质性。然而,通过应用光笼化IPTG作为合成诱导剂,这些缺点几乎可以完全消除。特别是对于越来越多的平行化表达培养物,无创和时空光诱导适合进行精确、均匀的高阶控制,以完全自动化或优化未来的生物技术应用。