Brain and Cognitive Sciences, University of Rochester, NY14627, USA.
Medical College of Wisconsin, Department of Neurology, Milwaukee, WI53226, USA.
Cereb Cortex. 2017 Sep 1;27(9):4379-4395. doi: 10.1093/cercor/bhw240.
We introduce an approach that predicts neural representations of word meanings contained in sentences then superposes these to predict neural representations of new sentences. A neurobiological semantic model based on sensory, motor, social, emotional, and cognitive attributes was used as a foundation to define semantic content. Previous studies have predominantly predicted neural patterns for isolated words, using models that lack neurobiological interpretation. Fourteen participants read 240 sentences describing everyday situations while undergoing fMRI. To connect sentence-level fMRI activation patterns to the word-level semantic model, we devised methods to decompose the fMRI data into individual words. Activation patterns associated with each attribute in the model were then estimated using multiple-regression. This enabled synthesis of activation patterns for trained and new words, which were subsequently averaged to predict new sentences. Region-of-interest analyses revealed that prediction accuracy was highest using voxels in the left temporal and inferior parietal cortex, although a broad range of regions returned statistically significant results, showing that semantic information is widely distributed across the brain. The results show how a neurobiologically motivated semantic model can decompose sentence-level fMRI data into activation features for component words, which can be recombined to predict activation patterns for new sentences.
我们介绍了一种方法,该方法可以预测句子中包含的单词含义的神经表示,然后对这些表示进行叠加,以预测新句子的神经表示。一个基于感觉、运动、社会、情感和认知属性的神经生物学语义模型被用作定义语义内容的基础。以前的研究主要使用缺乏神经生物学解释的模型来预测孤立单词的神经模式。14 名参与者在进行 fMRI 的同时阅读了 240 个描述日常情况的句子。为了将句子级 fMRI 激活模式与单词级语义模型联系起来,我们设计了将 fMRI 数据分解为单个单词的方法。然后使用多元回归估计模型中每个属性的激活模式。这使得能够为训练过的和新的单词合成激活模式,然后对其进行平均以预测新的句子。感兴趣区域分析显示,使用左颞叶和下顶叶皮层中的体素来进行预测时,准确率最高,尽管还有广泛的区域返回了具有统计学意义的结果,这表明语义信息广泛分布在大脑中。结果表明,一个受神经生物学启发的语义模型如何将句子级 fMRI 数据分解为组成单词的激活特征,然后可以对这些特征进行重新组合,以预测新句子的激活模式。