Suppr超能文献

大脑如何从单词层面的特征动态构建句子层面的意义。

How the Brain Dynamically Constructs Sentence-Level Meanings From Word-Level Features.

作者信息

Aguirre-Celis Nora, Miikkulainen Risto

机构信息

Department of Computer Science, ITESM, Monterrey, Mexico.

Department of Computer Science, The University of Texas in Austin, Austin, TX, United States.

出版信息

Front Artif Intell. 2022 Apr 21;5:733163. doi: 10.3389/frai.2022.733163. eCollection 2022.

Abstract

How are words connected to the thoughts they help to express? Recent brain imaging studies suggest that word representations are embodied in different neural systems through which the words are experienced. Building on this idea, embodied approaches such as the Concept Attribute Representations (CAR) theory represents concepts as a set of semantic features (attributes) mapped to different brain systems. An intriguing challenge to this theory is that people weigh concept attributes differently based on context, i.e., they construct meaning dynamically according to the combination of concepts that occur in the sentence. This research addresses this challenge through the Context-dEpendent meaning REpresentations in the BRAin (CEREBRA) neural network model. Based on changes in the brain images, CEREBRA quantifies the effect of sentence context on word meanings. Computational experiments demonstrated that words in different contexts have different representations, the changes observed in the concept attributes reveal unique conceptual combinations, and that the new representations are more similar to the other words in the sentence than to the original representations. Behavioral analysis further confirmed that the changes produced by CEREBRA are actionable knowledge that can be used to predict human responses. These experiments constitute a comprehensive evaluation of CEREBRA's context-based representations, showing that CARs can be dynamic and change based on context. Thus, CEREBRA is a useful tool for understanding how word meanings are represented in the brain, providing a framework for future interdisciplinary research on the mental lexicon.

摘要

词汇是如何与它们所帮助表达的思想相联系的?最近的脑成像研究表明,词汇表征体现在不同的神经系统中,通过这些系统人们体验词汇。基于这一观点,诸如概念属性表征(CAR)理论等具身方法将概念表示为映射到不同脑系统的一组语义特征(属性)。该理论面临的一个有趣挑战是,人们会根据语境对概念属性进行不同的权衡,也就是说,他们会根据句子中出现的概念组合动态地构建意义。本研究通过大脑中上下文相关意义表征(CEREBRA)神经网络模型应对这一挑战。基于脑图像的变化,CEREBRA量化句子语境对词义的影响。计算实验表明,不同语境中的词汇具有不同的表征,在概念属性中观察到的变化揭示了独特的概念组合,并且新的表征与句子中的其他词汇比与原始表征更相似。行为分析进一步证实,CEREBRA产生的变化是可用于预测人类反应的可操作知识。这些实验构成了对CEREBRA基于上下文的表征的全面评估,表明CAR可以是动态的,并可根据上下文变化。因此,CEREBRA是理解词汇意义在大脑中如何表征的有用工具,为未来关于心理词典的跨学科研究提供了一个框架。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/61f4/9069966/1a155a086a4e/frai-05-733163-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验