Campillo Noelia, Jorba Ignasi, Schaedel Laura, Casals Blai, Gozal David, Farré Ramon, Almendros Isaac, Navajas Daniel
Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de BarcelonaBarcelona, Spain; Cellular and Respiratory Biomechanics, Institute for Bioengineering of CataloniaBarcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades RespiratoriasMadrid, Spain.
Unitat de Biofísica i Bioenginyeria, Facultat de Medicina, Universitat de BarcelonaBarcelona, Spain; Cellular and Respiratory Biomechanics, Institute for Bioengineering of CataloniaBarcelona, Spain.
Front Physiol. 2016 Jul 29;7:319. doi: 10.3389/fphys.2016.00319. eCollection 2016.
Intermittent hypoxia (IH), a hallmark of obstructive sleep apnea (OSA), plays a critical role in the pathogenesis of OSA-associated morbidities, especially in the cardiovascular and respiratory systems. Oxidative stress and inflammation induced by IH are suggested as main contributors of end-organ dysfunction in OSA patients and animal models. Since the molecular mechanisms underlying these in vivo pathological responses remain poorly understood, implementation of experimental in vitro cell-based systems capable of inducing high-frequency IH would be highly desirable. Here, we describe the design, fabrication, and validation of a versatile chip for subjecting cultured cells to fast changes in gas partial pressure and to cyclic stretch. The chip is fabricated with polydimethylsiloxane (PDMS) and consists of a cylindrical well-covered by a thin membrane. Cells cultured on top of the membrane can be subjected to fast changes in oxygen concentration (equilibrium time ~6 s). Moreover, cells can be subjected to cyclic stretch at cardiac or respiratory frequencies independently or simultaneously. Rat bone marrow-derived mesenchymal stem cells (MSCs) exposed to IH mimicking OSA and cyclic stretch at cardiac frequencies revealed that hypoxia-inducible factor 1α (HIF-1α) expression was increased in response to both stimuli. Thus, the chip provides a versatile tool for the study of cellular responses to cyclical hypoxia and stretch.
间歇性缺氧(IH)是阻塞性睡眠呼吸暂停(OSA)的一个标志,在OSA相关疾病的发病机制中起着关键作用,尤其是在心血管和呼吸系统。IH诱导的氧化应激和炎症被认为是OSA患者和动物模型中终末器官功能障碍的主要原因。由于这些体内病理反应的分子机制仍知之甚少,因此非常需要能够诱导高频IH的基于细胞的体外实验系统。在此,我们描述了一种通用芯片的设计、制造和验证,该芯片可使培养的细胞经历气体分压的快速变化和周期性拉伸。该芯片由聚二甲基硅氧烷(PDMS)制成,由一个被薄膜覆盖的圆柱形孔组成。培养在膜顶部的细胞可以经历氧气浓度的快速变化(平衡时间约6秒)。此外,细胞可以独立或同时以心脏或呼吸频率进行周期性拉伸。暴露于模拟OSA的IH和心脏频率周期性拉伸的大鼠骨髓间充质干细胞(MSC)显示,缺氧诱导因子1α(HIF-1α)的表达在两种刺激下均增加。因此,该芯片为研究细胞对周期性缺氧和拉伸的反应提供了一种通用工具。