Dabrowski J, Lippert G, Avila J, Baringhaus J, Colambo I, Dedkov Yu S, Herziger F, Lupina G, Maultzsch J, Schaffus T, Schroeder T, Kot M, Tegenkamp C, Vignaud D, Asensio M-C
IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany.
Synchrotron SOLEIL, Saint Aubin, BP 48, 91192 Gif-sur-Yvette, France.
Sci Rep. 2016 Aug 17;6:31639. doi: 10.1038/srep31639.
The practical difficulties to use graphene in microelectronics and optoelectronics is that the available methods to grow graphene are not easily integrated in the mainstream technologies. A growth method that could overcome at least some of these problems is chemical vapour deposition (CVD) of graphene directly on semiconducting (Si or Ge) substrates. Here we report on the comparison of the CVD and molecular beam epitaxy (MBE) growth of graphene on the technologically relevant Ge(001)/Si(001) substrate from ethene (C2H4) precursor and describe the physical properties of the films as well as we discuss the surface reaction and diffusion processes that may be responsible for the observed behavior. Using nano angle resolved photoemission (nanoARPES) complemented by transport studies and Raman spectroscopy as well as density functional theory (DFT) calculations, we report the direct observation of massless Dirac particles in monolayer graphene, providing a comprehensive mapping of their low-hole doped Dirac electron bands. The micrometric graphene flakes are oriented along two predominant directions rotated by 30° with respect to each other. The growth mode is attributed to the mechanism when small graphene "molecules" nucleate on the Ge(001) surface and it is found that hydrogen plays a significant role in this process.
在微电子和光电子领域使用石墨烯存在实际困难,即现有的石墨烯生长方法不易集成到主流技术中。一种至少能克服其中一些问题的生长方法是直接在半导体(硅或锗)衬底上进行石墨烯的化学气相沉积(CVD)。在此,我们报告了在技术相关的Ge(001)/Si(001)衬底上,以乙烯(C₂H₄)为前驱体进行石墨烯CVD生长与分子束外延(MBE)生长的比较,描述了薄膜的物理性质,并讨论了可能导致观察到的行为的表面反应和扩散过程。利用纳米角分辨光电子能谱(nanoARPES),辅以输运研究、拉曼光谱以及密度泛函理论(DFT)计算,我们报告了在单层石墨烯中直接观察到无质量狄拉克粒子,提供了其低空穴掺杂狄拉克电子能带的全面图谱。微米级石墨烯薄片沿两个相互旋转30°的主要方向取向。生长模式归因于小石墨烯“分子”在Ge(001)表面成核的机制,并且发现氢在这个过程中起着重要作用。