Department of Physics , Korea University , Seoul 136701 , Republic of Korea.
Department of Materials Science and Engineering , Stanford University , Stanford , California 94305 , United States.
Nano Lett. 2019 Aug 14;19(8):5818-5826. doi: 10.1021/acs.nanolett.9b03019. Epub 2019 Aug 2.
Polymer-based electronics with low bending stiffnesses and high flexibility, including recently reported macroporous syringe-injectable mesh electronics, have shown substantial promise for chronic studies of neural circuitry in the brains of live animals. A central challenge for exploiting these highly flexible materials for in vivo studies has centered on the development of efficient input/output (I/O) connections to an external interface with high yield, low bonding resistance, and long-term stability. Here we report a new paradigm applied to the challenging case of injectable mesh electronics that exploits the high flexibility of nanoscale thickness two-sided metal I/O pads that can deform and contact standard interface cables in high yield with long-term electrical stability. First, we describe the design and facile fabrication of two-sided metal I/O pads that allow for contact without regard to probe orientation. Second, systematic studies of the contact resistance as a function of I/O pad design and mechanical properties demonstrate the key role of the I/O pad bending stiffness in achieving low-resistance stable contacts. Additionally, computational studies provide design rules for achieving high-yield multiplexed contact interfacing in the case of angular misalignment such that adjacent channels are not shorted. Third, the in vitro measurement of 32-channel mesh electronics probes bonded to interface cables using the direct contact method shows a reproducibly high yield of electrical connectivity. Finally, in vivo experiments with 32-channel mesh electronics probes implanted in live mice demonstrate the chronic stability of the direct contact interface, enabling consistent tracking of single-unit neural activity over at least 2 months without a loss of channel recording. The direct contact interfacing methodology paves the way for scalable long-term connections of multiplexed mesh electronics neural probes for neural recording and modulation and moreover could be used to facilitate a scalable interconnection of other flexible electronics in biological studies and therapeutic applications.
基于聚合物的电子设备具有较低的弯曲刚度和较高的柔韧性,包括最近报道的大孔注射器可注射网孔电子产品,它们在活体动物大脑中的神经回路的慢性研究中显示出了巨大的潜力。利用这些高度灵活的材料进行体内研究的一个核心挑战是开发高效的输入/输出(I/O)连接,以实现高产率、低键合电阻和长期稳定性与外部接口的连接。在这里,我们报告了一种新的范例,应用于具有挑战性的可注射网孔电子产品,该范例利用了纳米级厚度双面金属 I/O 垫的高柔韧性,这些 I/O 垫可以在高产率下变形并与标准接口电缆接触,具有长期的电稳定性。首先,我们描述了双面金属 I/O 垫的设计和简易制造方法,该方法允许在不考虑探头方向的情况下进行接触。其次,对 I/O 垫设计和机械性能作为函数的接触电阻的系统研究表明,I/O 垫弯曲刚度在实现低电阻稳定接触方面起着关键作用。此外,计算研究提供了设计规则,以在存在角度不对准的情况下实现高产量的多路复用接触接口,从而避免相邻通道短路。第三,使用直接接触方法将接口电缆与 32 通道网孔电子产品探头键合的体外测量显示出电连接的高重复性。最后,在活体小鼠中植入 32 通道网孔电子产品探头的体内实验表明,直接接触接口具有慢性稳定性,能够在至少 2 个月的时间内持续跟踪单个单元的神经活动,而不会丢失通道记录。直接接触接口方法为可扩展的多路复用网孔电子产品神经探头的长期连接铺平了道路,用于神经记录和调制,此外,它还可以用于促进生物研究和治疗应用中其他柔性电子产品的可扩展互连。