Lequeux Steven, Sampaio Joao, Cros Vincent, Yakushiji Kay, Fukushima Akio, Matsumoto Rie, Kubota Hitoshi, Yuasa Shinji, Grollier Julie
Unité Mixte de Physique, CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay, 91767, Palaiseau, France.
Laboratoire de Physique des Solides, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91405, Orsay, France.
Sci Rep. 2016 Aug 19;6:31510. doi: 10.1038/srep31510.
Memristors are non-volatile nano-resistors which resistance can be tuned by applied currents or voltages and set to a large number of levels. Thanks to these properties, memristors are ideal building blocks for a number of applications such as multilevel non-volatile memories and artificial nano-synapses, which are the focus of this work. A key point towards the development of large scale memristive neuromorphic hardware is to build these neural networks with a memristor technology compatible with the best candidates for the future mainstream non-volatile memories. Here we show the first experimental achievement of a multilevel memristor compatible with spin-torque magnetic random access memories. The resistive switching in our spin-torque memristor is linked to the displacement of a magnetic domain wall by spin-torques in a perpendicularly magnetized magnetic tunnel junction. We demonstrate that our magnetic synapse has a large number of intermediate resistance states, sufficient for neural computation. Moreover, we show that engineering the device geometry allows leveraging the most efficient spin torque to displace the magnetic domain wall at low current densities and thus to minimize the energy cost of our memristor. Our results pave the way for spin-torque based analog magnetic neural computation.
忆阻器是一种非易失性纳米电阻器,其电阻可通过施加的电流或电压进行调节,并可设置为多个电平。由于这些特性,忆阻器是许多应用(如多级非易失性存储器和人工纳米突触)的理想构建模块,而这些正是本工作的重点。大规模忆阻神经形态硬件发展的一个关键点是用与未来主流非易失性存储器最佳候选者兼容的忆阻器技术构建这些神经网络。在此,我们展示了与自旋扭矩磁性随机存取存储器兼容的多级忆阻器的首个实验成果。我们的自旋扭矩忆阻器中的电阻切换与垂直磁化磁隧道结中自旋扭矩引起的磁畴壁位移有关。我们证明我们的磁性突触具有大量中间电阻状态,足以进行神经计算。此外,我们表明设计器件几何结构能够利用最有效的自旋扭矩在低电流密度下移动磁畴壁,从而使我们忆阻器的能量成本最小化。我们的结果为基于自旋扭矩的模拟磁性神经计算铺平了道路。