Tazi Mia F, Dakhlallah Duaa A, Caution Kyle, Gerber Madelyn M, Chang Sheng-Wei, Khalil Hany, Kopp Benjamin T, Ahmed Amr E, Krause Kathrin, Davis Ian, Marsh Clay, Lovett-Racke Amy E, Schlesinger Larry S, Cormet-Boyaka Estelle, Amer Amal O
a Department of Microbial Infection and Immunity, Center for Microbial Interface Biology , The Ohio State University , Columbus , OH , USA.
b Davis Heart and Lung Research Institute , The Ohio State University , Columbus , OH , USA.
Autophagy. 2016 Nov;12(11):2026-2037. doi: 10.1080/15548627.2016.1217370.
Cystic fibrosis (CF) is a fatal, genetic disorder that critically affects the lungs and is directly caused by mutations in the CF transmembrane conductance regulator (CFTR) gene, resulting in defective CFTR function. Macroautophagy/autophagy is a highly regulated biological process that provides energy during periods of stress and starvation. Autophagy clears pathogens and dysfunctional protein aggregates within macrophages. However, this process is impaired in CF patients and CF mice, as their macrophages exhibit limited autophagy activity. The study of microRNAs (Mirs), and other noncoding RNAs, continues to offer new therapeutic targets. The objective of this study was to elucidate the role of Mirs in dysregulated autophagy-related genes in CF macrophages, and then target them to restore this host-defense function and improve CFTR channel function. We identified the Mirc1/Mir17-92 cluster as a potential negative regulator of autophagy as CF macrophages exhibit decreased autophagy protein expression and increased cluster expression when compared to wild-type (WT) counterparts. The absence or reduced expression of the cluster increases autophagy protein expression, suggesting the canonical inverse relationship between Mirc1/Mir17-92 and autophagy gene expression. An in silico study for targets of Mirs that comprise the cluster suggested that the majority of the Mirs target autophagy mRNAs. Those targets were validated by luciferase assays. Notably, the ability of macrophages expressing mutant F508del CFTR to transport halide through their membranes is compromised and can be restored by downregulation of these inherently elevated Mirs, via restoration of autophagy. In vivo, downregulation of Mir17 and Mir20a partially restored autophagy expression and hence improved the clearance of Burkholderia cenocepacia. Thus, these data advance our understanding of mechanisms underlying the pathobiology of CF and provide a new therapeutic platform for restoring CFTR function and autophagy in patients with CF.
囊性纤维化(CF)是一种致命的遗传性疾病,严重影响肺部,直接由囊性纤维化跨膜传导调节因子(CFTR)基因突变引起,导致CFTR功能缺陷。巨自噬/自噬是一个高度调控的生物学过程,在应激和饥饿期间提供能量。自噬可清除巨噬细胞内的病原体和功能失调的蛋白质聚集体。然而,CF患者和CF小鼠的这一过程受损,因为他们的巨噬细胞自噬活性有限。对微小RNA(Mirs)和其他非编码RNA的研究不断提供新的治疗靶点。本研究的目的是阐明Mirs在CF巨噬细胞中自噬相关基因失调中的作用,然后靶向这些基因以恢复这种宿主防御功能并改善CFTR通道功能。我们将Mirc1/Mir17-92簇鉴定为自噬的潜在负调节因子,因为与野生型(WT)巨噬细胞相比,CF巨噬细胞的自噬蛋白表达降低而该簇的表达增加。该簇的缺失或表达降低会增加自噬蛋白表达,表明Mirc1/Mir17-92与自噬基因表达之间存在典型的反向关系。对构成该簇的Mirs靶点的计算机模拟研究表明,大多数Mirs靶向自噬mRNA。这些靶点通过荧光素酶测定得到验证。值得注意的是,表达突变型F508del CFTR的巨噬细胞通过其膜转运卤化物的能力受损,并且通过恢复自噬下调这些内在升高的Mirs可以恢复该能力。在体内,下调Mir17和Mir20a可部分恢复自噬表达,从而改善洋葱伯克霍尔德菌的清除。因此,这些数据推进了我们对CF病理生物学潜在机制的理解,并为恢复CF患者的CFTR功能和自噬提供了一个新的治疗平台。