Suppr超能文献

卷积特征图上的目标检测网络。

Object Detection Networks on Convolutional Feature Maps.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2017 Jul;39(7):1476-1481. doi: 10.1109/TPAMI.2016.2601099. Epub 2016 Aug 17.

Abstract

Most object detectors contain two important components: a feature extractor and an object classifier. The feature extractor has rapidly evolved with significant research efforts leading to better deep convolutional architectures. The object classifier, however, has not received much attention and many recent systems (like SPPnet and Fast/Faster R-CNN) use simple multi-layer perceptrons. This paper demonstrates that carefully designing deep networks for object classification is just as important. We experiment with region-wise classifier networks that use shared, region-independent convolutional features. We call them "Networks on Convolutional feature maps" (NoCs). We discover that aside from deep feature maps, a deep and convolutional per-region classifier is of particular importance for object detection, whereas latest superior image classification models (such as ResNets and GoogLeNets) do not directly lead to good detection accuracy without using such a per-region classifier. We show by experiments that despite the effective ResNets and Faster R-CNN systems, the design of NoCs is an essential element for the 1st-place winning entries in ImageNet and MS COCO challenges 2015.

摘要

大多数目标探测器包含两个重要组件

特征提取器和目标分类器。特征提取器发展迅速,大量研究工作带来了更好的深度卷积架构。然而,目标分类器并没有受到太多关注,许多最近的系统(如 SPPnet 和 Fast/Faster R-CNN)使用简单的多层感知机。本文证明,精心设计目标分类的深度网络同样重要。我们尝试使用共享、与区域无关的卷积特征的区域分类器网络。我们称之为“基于卷积特征图的网络”(NoC)。我们发现,除了深度特征图之外,对于目标检测而言,深度和卷积的每个区域分类器尤其重要,而最新的优秀图像分类模型(如 ResNets 和 GoogLeNets)如果不使用这种每个区域的分类器,就无法直接获得良好的检测精度。通过实验表明,尽管有效的 ResNets 和 Faster R-CNN 系统,但是设计 NoC 是在 2015 年的 ImageNet 和 MS COCO 挑战赛中获得第一名的重要因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验