Department of Electrical Engineering, École de technologie supérieure, 1100 Notre-Dame Ouest, Montreal, QC, H3C 1K3, Canada.
Sci Rep. 2022 Jul 22;12(1):12559. doi: 10.1038/s41598-022-16302-3.
We report a complete deep-learning framework using a single-step object detection model in order to quickly and accurately detect and classify the types of manufacturing defects present on Printed Circuit Board (PCBs). We describe the complete model architecture and compare with the current state-of-the-art using the same PCB defect dataset. These benchmark methods include the Faster Region Based Convolutional Neural Network (FRCNN) with ResNet50, RetinaNet, and You-Only-Look-Once (YOLO) for defect detection and identification. Results show that our method achieves a 98.1% mean average precision(mAP[IoU = 0.5]) on the test samples using low-resolution images. This is 3.2% better than the state-of-the-art using low-resolution images (YOLO V5m) and 1.4% better than the state-of-the-art using high-resolution images (FRCNN-ResNet FPN). While achieving better accuracies, our model also requires roughly 3× fewer model parameters (7.02M) compared with the state-of-the-art FRCNN-ResNet FPN (23.59M) and YOLO V5m (20.08M). In most cases, the major bottleneck of the PCB manufacturing chain is quality control, reliability testing and manual rework of defective PCBs. Based on the initial results, we firmly believe that implementing this model on a PCB manufacturing line could significantly increase the production yield and throughput, while dramatically reducing manufacturing costs.
我们报告了一个完整的深度学习框架,使用单步目标检测模型,以便快速准确地检测和分类印刷电路板 (PCB) 上存在的制造缺陷类型。我们描述了完整的模型架构,并使用相同的 PCB 缺陷数据集与当前最先进的方法进行了比较。这些基准方法包括使用 ResNet50 的更快区域卷积神经网络 (FRCNN)、RetinaNet 和 You-Only-Look-Once (YOLO) 进行缺陷检测和识别。结果表明,我们的方法在使用低分辨率图像的测试样本上实现了 98.1%的平均精度 (mAP[IoU=0.5])。这比使用低分辨率图像的最先进方法 (YOLO V5m) 好 3.2%,比使用高分辨率图像的最先进方法 (FRCNN-ResNet FPN) 好 1.4%。虽然实现了更高的精度,但与最先进的 FRCNN-ResNet FPN (23.59M) 和 YOLO V5m (20.08M) 相比,我们的模型所需的模型参数也大约少 3 倍 (7.02M)。在大多数情况下,PCB 制造链的主要瓶颈是质量控制、可靠性测试和有缺陷 PCB 的人工返工。基于初步结果,我们坚信在 PCB 生产线上实施该模型可以显著提高产量和吞吐量,同时大幅降低制造成本。