Genheden Samuel, Eriksson Leif A
Department of Chemistry and Molecular Biology, University of Gothenburg , Box 462, SE-405 30 Göteborg, Sweden.
J Chem Theory Comput. 2016 Sep 13;12(9):4651-61. doi: 10.1021/acs.jctc.6b00557. Epub 2016 Aug 31.
Liposomes are common carriers of drug molecules, providing enhanced delivery and accumulation of hydrophilic agents or larger biomolecules. Molecular simulations can be used to estimate key features of the drug molecules upon interaction with the liposomes, such as penetration barriers and localization. Herein, we investigate several aspects of the computational estimation of penetration barriers, viz. the potential of mean force (PMFs) along a vector spanning the membrane. First, we provide an evaluation of the all-atom (AA) and coarse-grained (CG) parametrization of 5-aminolevulinic acid (5-ALA) and two of its alkyl esters by computing n-octanol/water partition coefficients. We find that the CG parametrization of the esters performs significantly better than the CG model of 5-ALA, highlighting the difficulty to coarse-grain small, polar molecules. However, the expected trend in partition coefficients is reproduced also with the CG models. Second, we compare PMFs in a small membrane slab described with either the AA or CG models. Here, we are able to reproduce the all-atom PMF of 5-ALA with CG. However, for the alkyl esters it is unfortunately not possible to correctly reproduce both the depth and the penetration barrier of the PMF seen in the AA simulations with any of the tested CG models. We argue that it is more important to choose a CG parametrization that reproduces the depth of the PMF. Third, we compare, using the CG model, PMFs in the membrane slab with PMFs in a large, realistic liposome. We find similar depths but slightly different penetration barriers most likely due to differences in the lipid density along the membrane axis. Finally, we compute PMFs in liposomes with three different lipid compositions. Unfortunately, differences in the PMFs could not be quantified, and it remains to be investigated to what extent liposome simulations can fully reproduce experimental findings.
脂质体是药物分子的常见载体,可增强亲水性药物或较大生物分子的递送与积累。分子模拟可用于估计药物分子与脂质体相互作用时的关键特征,如渗透屏障和定位。在此,我们研究了渗透屏障计算估计的几个方面,即沿跨越膜的向量的平均力势(PMF)。首先,我们通过计算正辛醇/水分配系数,对5-氨基乙酰丙酸(5-ALA)及其两种烷基酯的全原子(AA)和粗粒度(CG)参数化进行了评估。我们发现酯的CG参数化表现明显优于5-ALA的CG模型,突出了对小极性分子进行粗粒度处理的困难。然而,CG模型也再现了分配系数的预期趋势。其次,我们比较了用AA或CG模型描述的小膜片层中的PMF。在这里,我们能够用CG再现5-ALA的全原子PMF。然而,对于烷基酯,遗憾的是,使用任何测试的CG模型都无法正确再现AA模拟中看到的PMF的深度和渗透屏障。我们认为选择能再现PMF深度的CG参数化更为重要。第三,我们使用CG模型比较了膜片层中的PMF与大型真实脂质体中的PMF。我们发现深度相似,但渗透屏障略有不同,这很可能是由于沿膜轴脂质密度的差异。最后,我们计算了具有三种不同脂质组成的脂质体中的PMF。遗憾的是,PMF的差异无法量化,脂质体模拟能在多大程度上完全再现实验结果仍有待研究。