Department of Chemical Engineering, National Tsing Hua University , 101, Section 2, Kuang-Fu Road, Hsin-Chu 30013, Taiwan.
Mechanical and Systems Research Laboratories, Industrial Technology Research Institute , 195, Sec. 4, Chung Hsing Road, Chutung, Hsin-Chu 31040, Taiwan.
Nano Lett. 2016 Sep 14;16(9):5719-27. doi: 10.1021/acs.nanolett.6b02401. Epub 2016 Aug 31.
Integrating various devices to achieve high-performance energy storage systems to satisfy various demands in modern societies become more and more important. Electrical double-layer capacitors (EDLCs), one kind of the electrochemical capacitors, generally provide the merits of high charge-discharge rates, extremely long cycle life, and high efficiency in electricity capture/storage, leading to a desirable device of electricity management from portable electronics to hybrid vehicles or even smart grid application. However, the low cell voltage (2.5-2.7 V in organic liquid electrolytes) of EDLCs lacks the direct combination of Li-ion batteries (LIBs) and EDLCs for creating new functions in future applications without considering the issue of a relatively low energy density. Here we propose a guideline, "choosing a matching pair of electrode materials and electrolytes", to effectively extend the cell voltage of EDLCs according to three general strategies. Based on the new strategy proposed in this work, materials with an inert surface enable to tolerate a wider potential window in commercially available organic electrolytes in comparison with activated carbons (ACs). The binder-free, vertically grown graphene nanowalls (GNW) and nitrogen-doped GNW (NGNW) electrodes respectively provide good examples for extending the upper potential limit of a positive electrode of EDLCs from 0.1 to 1.5 V (vs Ag/AgNO3) as well as the lower potential limit of a negative electrode of EDLCs from -2.0 V to ca. -2.5 V in 1 M TEABF4/PC (propylene carbonate) compared to ACs. This newly designed asymmetric EDLC exhibits a cell voltage of 4 V, specific energy of 52 Wh kg(-1) (ca. a device energy density of 13 Wh kg(-1)), and specific power of 8 kW kg(-1) and ca. 100% retention after 10,000 cycles charge-discharge, reducing the series number of EDLCs to enlarge the module voltage and opening the possibility for directly combining EDLCs and LIBs in advanced applications.
将各种设备集成到高性能储能系统中,以满足现代社会的各种需求变得越来越重要。电化学电容器(双电层电容器)通常具有高充放电速率、超长循环寿命和高效电能捕获/存储等优点,是从便携式电子设备到混合动力汽车甚至智能电网应用的理想电能管理装置。然而,双电层电容器的电池电压低(在有机液体电解质中为 2.5-2.7 V),缺乏与锂离子电池(LIBs)的直接组合,无法在不考虑相对较低能量密度的情况下为未来应用创造新功能。在这里,我们提出了一个指导原则,“选择匹配的电极材料和电解质对”,根据三种一般策略,有效地扩展双电层电容器的电池电压。基于这项工作中提出的新策略,具有惰性表面的材料能够在商业上可用的有机电解质中耐受更宽的电位窗口,与活性炭(AC)相比。无粘合剂、垂直生长的石墨烯纳米墙(GNW)和氮掺杂 GNW(NGNW)电极分别为将双电层电容器正极的上限电位从 0.1 V(相对于 Ag/AgNO3)扩展到 1.5 V(相对于 Ag/AgNO3)以及将双电层电容器负极的下限电位从-2.0 V 扩展到约-2.5 V 提供了很好的例子在 1 M TEABF4/PC(碳酸丙烯酯)中,与 AC 相比。这种新设计的不对称双电层电容器的电池电压为 4 V,比能量为 52 Wh kg(-1)(约为 13 Wh kg(-1)的器件能量密度),比功率为 8 kW kg(-1),经过 10,000 次充放电循环后保持约 100%的容量,减少了双电层电容器的串联数量,扩大了模块电压,并为直接将双电层电容器和 LIBs 组合在高级应用中开辟了可能性。