Bertran-Serra Enric, Rodriguez-Miguel Shahadev, Li Zhuo, Ma Yang, Farid Ghulam, Chaitoglou Stefanos, Amade Roger, Ospina Rogelio, Andújar José-Luis
ENPHOCAMAT (FEMAN) Group, Department of Applied Physics, Universitat de Barcelona, Martí i Franquès 1, E-08028 Barcelona, Spain.
Institute of Nanoscience and Nanotechnology (IN2UB), Universitat de Barcelona, E-08028 Barcelona, Spain.
Nanomaterials (Basel). 2023 Sep 11;13(18):2533. doi: 10.3390/nano13182533.
In recent years, vertical graphene nanowalls (VGNWs) have gained significant attention due to their exceptional properties, including their high specific surface area, excellent electrical conductivity, scalability, and compatibility with transition metal compounds. These attributes position VGNWs as a compelling choice for various applications, such as energy storage, catalysis, and sensing, driving interest in their integration into next-generation commercial graphene-based devices. Among the diverse graphene synthesis methods, plasma-enhanced chemical vapor deposition (PECVD) stands out for its ability to create large-scale graphene films and VGNWs on diverse substrates. However, despite progress in optimizing the growth conditions to achieve micrometer-sized graphene nanowalls, a comprehensive understanding of the underlying physicochemical mechanisms that govern nanostructure formation remains elusive. Specifically, a deeper exploration of nanometric-level phenomena like nucleation, carbon precursor adsorption, and adatom surface diffusion is crucial for gaining precise control over the growth process. Hydrogen's dual role as a co-catalyst and etchant in VGNW growth requires further investigation. This review aims to fill the knowledge gaps by investigating VGNW nucleation and growth using PECVD, with a focus on the impact of the temperature on the growth ratio and nucleation density across a broad temperature range. By providing insights into the PECVD process, this review aims to optimize the growth conditions for tailoring VGNW properties, facilitating applications in the fields of energy storage, catalysis, and sensing.
近年来,垂直石墨烯纳米壁(VGNWs)因其优异的性能而备受关注,这些性能包括高比表面积、出色的导电性、可扩展性以及与过渡金属化合物的兼容性。这些特性使VGNWs成为储能、催化和传感等各种应用的极具吸引力的选择,激发了人们将其集成到下一代基于石墨烯的商业设备中的兴趣。在各种石墨烯合成方法中,等离子体增强化学气相沉积(PECVD)因其能够在各种衬底上制备大规模石墨烯薄膜和VGNWs而脱颖而出。然而,尽管在优化生长条件以获得微米级石墨烯纳米壁方面取得了进展,但对控制纳米结构形成的潜在物理化学机制的全面理解仍然难以捉摸。具体而言,对成核、碳前驱体吸附和吸附原子表面扩散等纳米级现象进行更深入的探索对于精确控制生长过程至关重要。氢在VGNW生长中作为助催化剂和蚀刻剂的双重作用需要进一步研究。本综述旨在通过研究使用PECVD的VGNW成核和生长来填补知识空白,重点关注在较宽温度范围内温度对生长速率和成核密度的影响。通过深入了解PECVD过程,本综述旨在优化生长条件以定制VGNW性能,促进其在储能、催化和传感领域的应用。