Bouhrara Mustapha, Bonny Jean-Marie, Ashinsky Beth G, Maring Michael C, Spencer Richard G
IEEE Trans Med Imaging. 2017 Jan;36(1):181-193. doi: 10.1109/TMI.2016.2601243. Epub 2016 Aug 18.
Denoising of magnetic resonance (MR) images enhances diagnostic accuracy, the quality of image manipulations such as registration and segmentation, and parameter estimation. The first objective of this paper is to introduce a new, high-performance, nonlocal filter for noise reduction in MR image sets consisting of progressively-weighted, that is, multispectral, images. This filter is a multispectral extension of the nonlocal maximum likelihood filter (NLML). Performance was evaluated on synthetic and in-vivo T - and T -weighted brain imaging data, and compared to the nonlocal-means (NLM) and its multispectral version, that is, MS-NLM, and the nonlocal maximum likelihood (NLML) filters. Visual inspection of filtered images and quantitative analyses showed that all filters provided substantial reduction of noise. Further, as expected, the use of multispectral information improves filtering quality. In addition, numerical and experimental analyses indicated that the new multispectral NLML filter, MS-NLML, demonstrated markedly less blurring and loss of image detail than seen with the other filters evaluated. In addition, since noise standard deviation (SD) is an important parameter for all of these nonlocal filters, a multispectral extension of the method of maximum likelihood estimation (MLE) of noise amplitude is presented and compared to both local and nonlocal MLE methods. Numerical and experimental analyses indicated the superior performance of this multispectral method for estimation of noise SD.
磁共振(MR)图像去噪可提高诊断准确性、图像配准和分割等图像处理质量以及参数估计。本文的首要目标是引入一种新型的高性能非局部滤波器,用于对由渐进加权(即多光谱)图像组成的MR图像集进行降噪。该滤波器是对非局部最大似然滤波器(NLML)的多光谱扩展。在合成的和体内的T加权及T加权脑成像数据上评估了其性能,并与非局部均值(NLM)及其多光谱版本(即MS - NLM)以及非局部最大似然(NLML)滤波器进行了比较。对滤波后图像的视觉检查和定量分析表明,所有滤波器都能显著降低噪声。此外,正如预期的那样,多光谱信息的使用提高了滤波质量。另外,数值和实验分析表明,新的多光谱NLML滤波器(MS - NLML)与所评估的其他滤波器相比,图像模糊和细节损失明显更少。此外,由于噪声标准差(SD)是所有这些非局部滤波器的一个重要参数,本文提出了一种噪声幅度最大似然估计(MLE)方法的多光谱扩展,并与局部和非局部MLE方法进行了比较。数值和实验分析表明,这种多光谱方法在估计噪声SD方面具有优越性能。