Suppr超能文献

从童年到成年早期骨骼微结构、几何形状、密度和强度的性别差异及与生长相关的适应性变化:一项混合纵向高分辨率外周定量CT研究

Sex Differences and Growth-Related Adaptations in Bone Microarchitecture, Geometry, Density, and Strength From Childhood to Early Adulthood: A Mixed Longitudinal HR-pQCT Study.

作者信息

Gabel Leigh, Macdonald Heather M, McKay Heather A

机构信息

Department of Orthopaedics, University of British Columbia, Vancouver, Canada.

Centre for Hip Health and Mobility, Vancouver Coastal Health Research Institute, Vancouver, Canada.

出版信息

J Bone Miner Res. 2017 Feb;32(2):250-263. doi: 10.1002/jbmr.2982. Epub 2016 Oct 24.

Abstract

Sex differences in bone strength and fracture risk are well documented. However, we know little about bone strength accrual during growth and adaptations in bone microstructure, density, and geometry that accompany gains in bone strength. Thus, our objectives were to (1) describe growth related adaptations in bone microarchitecture, geometry, density, and strength at the distal tibia and radius in boys and girls; and (2) compare differences in adaptations in bone microarchitecture, geometry, density, and strength between boys and girls. We used HR-pQCT at the distal tibia (8% site) and radius (7% site) in 184 boys and 209 girls (9 to 20 years old at baseline). We aligned boys and girls on a common maturational landmark (age at peak height velocity [APHV]) and fit a mixed effects model to these longitudinal data. Importantly, boys showed 28% to 63% greater estimated bone strength across 12 years of longitudinal growth. Boys showed 28% to 80% more porous cortices compared with girls at both sites across all biological ages, except at the radius at 9 years post-APHV. However, cortical density was similar between boys and girls at all ages at both sites, except at 9 years post-APHV at the tibia when girls' values were 2% greater than boys'. Boys showed 13% to 48% greater cortical and total bone area across growth. Load-to-strength ratio was 26% to 27% lower in boys at all ages, indicating lower risk of distal forearm fracture compared with girls. Contrary to previous HR-pQCT studies that did not align boys and girls at the same biological age, we did not observe sex differences in Ct.BMD. Boys' superior bone size and strength compared with girls may confer them a protective advantage. However, boys' consistently more porous cortices may contribute to their higher fracture incidence during adolescence. Large prospective studies using HR-pQCT that target boys and girls who have sustained a fracture are needed to verify this. © 2016 American Society for Bone and Mineral Research.

摘要

骨强度和骨折风险的性别差异已有充分记录。然而,我们对生长过程中骨强度的累积以及伴随骨强度增加的骨微观结构、密度和几何形状的适应性了解甚少。因此,我们的目标是:(1)描述男孩和女孩胫骨远端和桡骨在骨微结构、几何形状、密度和强度方面与生长相关的适应性变化;(2)比较男孩和女孩在骨微结构、几何形状、密度和强度适应性方面的差异。我们对184名男孩和209名女孩(基线年龄为9至20岁)的胫骨远端(8%部位)和桡骨(7%部位)进行了高分辨率外周定量计算机断层扫描(HR-pQCT)。我们根据一个共同的成熟标志(身高增长峰值速度时的年龄[APHV])对男孩和女孩进行分组,并对这些纵向数据拟合了一个混合效应模型。重要的是,在12年的纵向生长过程中,男孩的估计骨强度比女孩高28%至63%。在所有生物年龄阶段,除了APHV后9年的桡骨部位外,男孩在两个部位的皮质骨孔隙率均比女孩高28%至80%。然而,在所有年龄阶段,两个部位的男孩和女孩的皮质骨密度相似,除了在胫骨APHV后9年时,女孩的值比男孩高2%。在整个生长过程中,男孩的皮质骨和总骨面积比女孩大13%至48%。在所有年龄阶段,男孩的负荷-强度比均比女孩低26%至27%,这表明与女孩相比,男孩发生前臂远端骨折的风险较低。与之前未根据相同生物年龄对男孩和女孩进行分组的HR-pQCT研究相反,我们没有观察到骨密度(Ct.BMD)的性别差异。与女孩相比,男孩优越的骨骼大小和强度可能赋予他们一种保护优势。然而,男孩持续存在的较多孔隙的皮质骨可能导致他们在青春期骨折发生率较高。需要进行大规模前瞻性研究,使用HR-pQCT针对曾发生骨折的男孩和女孩来验证这一点。© 2016美国骨与矿物质研究学会。

相似文献

2
Reexamining the Surfaces of Bone in Boys and Girls During Adolescent Growth: A 12-Year Mixed Longitudinal pQCT Study.
J Bone Miner Res. 2015 Dec;30(12):2158-67. doi: 10.1002/jbmr.2570. Epub 2015 Jul 14.
5
Physical Activity, Sedentary Time, and Bone Strength From Childhood to Early Adulthood: A Mixed Longitudinal HR-pQCT study.
J Bone Miner Res. 2017 Jul;32(7):1525-1536. doi: 10.1002/jbmr.3115. Epub 2017 Mar 22.
6
Differences in skeletal microarchitecture and strength in African-American and white women.
J Bone Miner Res. 2013 Oct;28(10):2177-85. doi: 10.1002/jbmr.1953.
7
Bone Strength in Girls and Boys After a Distal Radius Fracture: A 2-Year HR-pQCT Double Cohort Study.
J Bone Miner Res. 2018 Feb;33(2):229-240. doi: 10.1002/jbmr.3307. Epub 2017 Nov 6.
8
Bone microarchitecture and strength in men and women with PLS3 gene variants assessed with HR-pQCT.
J Bone Miner Res. 2025 Feb 2;40(2):241-250. doi: 10.1093/jbmr/zjae186.
9
Body composition during childhood and adolescence: relations to bone strength and microstructure.
J Clin Endocrinol Metab. 2014 Dec;99(12):4641-8. doi: 10.1210/jc.2014-1113.

引用本文的文献

1
Stochastic parametric skeletal dosimetry model for humans: Anatomical-morphological basis and parameter evaluation.
PLoS One. 2025 Jul 2;20(7):e0327156. doi: 10.1371/journal.pone.0327156. eCollection 2025.
5
Sexual Dimorphism in the Musculoskeletal System: Sex Hormones and Beyond.
J Endocr Soc. 2024 Sep 1;8(10):bvae153. doi: 10.1210/jendso/bvae153. eCollection 2024 Aug 27.
6
Nutrition and Bone Marrow Adiposity in Relation to Bone Health.
Physiol Res. 2024 Aug 30;73(S1):S107-S138. doi: 10.33549/physiolres.935293. Epub 2024 May 15.
7
Bone mass accrual in children.
Curr Opin Endocrinol Diabetes Obes. 2024 Feb 1;31(1):53-59. doi: 10.1097/MED.0000000000000849. Epub 2023 Nov 27.
8
Characterizing Bone Phenotypes Related to Skeletal Fragility Using Advanced Medical Imaging.
Curr Osteoporos Rep. 2023 Dec;21(6):685-697. doi: 10.1007/s11914-023-00830-6. Epub 2023 Oct 26.
9
Exercise for optimizing bone health after hormone-induced increases in bone stiffness.
Front Endocrinol (Lausanne). 2023 Sep 18;14:1219454. doi: 10.3389/fendo.2023.1219454. eCollection 2023.
10
Associations of Dietary Anthocyanidins Intake with Bone Health in Children: A Cross-Sectional Study.
Calcif Tissue Int. 2023 Oct;113(4):393-402. doi: 10.1007/s00223-023-01128-6. Epub 2023 Sep 1.

本文引用的文献

1
Relationship Between Timing of Peak Height Velocity and Pubertal Staging in Boys and Girls.
J Clin Res Pediatr Endocrinol. 2015 Sep;7(3):235-7. doi: 10.4274/jcrpe.2007.
3
Reexamining the Surfaces of Bone in Boys and Girls During Adolescent Growth: A 12-Year Mixed Longitudinal pQCT Study.
J Bone Miner Res. 2015 Dec;30(12):2158-67. doi: 10.1002/jbmr.2570. Epub 2015 Jul 14.
5
6
A comparison of methods for in vivo assessment of cortical porosity in the human appendicular skeleton.
Bone. 2015 Apr;73:167-75. doi: 10.1016/j.bone.2014.11.023. Epub 2014 Dec 23.
7
Enhancing a Somatic Maturity Prediction Model.
Med Sci Sports Exerc. 2015 Aug;47(8):1755-64. doi: 10.1249/MSS.0000000000000588.
8
Bone architecture and strength in the growing skeleton: the role of sedentary time.
Med Sci Sports Exerc. 2015 Feb;47(2):363-72. doi: 10.1249/MSS.0000000000000418.
9
Fractures in children: epidemiology and activity-specific fracture rates.
J Bone Joint Surg Am. 2013 Apr 3;95(7):e42. doi: 10.2106/JBJS.L.00369.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验