Rice John D, Tsodikov Alex
Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, U.S.A.
Biometrics. 2017 Jun;73(2):463-472. doi: 10.1111/biom.12580. Epub 2016 Aug 24.
In cancer research, interest frequently centers on factors influencing a latent event that must precede a terminal event. In practice it is often impossible to observe the latent event precisely, making inference about this process difficult. To address this problem, we propose a joint model for the unobserved time to the latent and terminal events, with the two events linked by the baseline hazard. Covariates enter the model parametrically as linear combinations that multiply, respectively, the hazard for the latent event and the hazard for the terminal event conditional on the latent one. We derive the partial likelihood estimators for this problem assuming the latent event is observed, and propose a profile likelihood-based method for estimation when the latent event is unobserved. The baseline hazard in this case is estimated nonparametrically using the EM algorithm, which allows for closed-form Breslow-type estimators at each iteration, bringing improved computational efficiency and stability compared with maximizing the marginal likelihood directly. We present simulation studies to illustrate the finite-sample properties of the method; its use in practice is demonstrated in the analysis of a prostate cancer data set.
在癌症研究中,关注点常常集中在影响一个潜在事件的因素上,而这个潜在事件必须先于一个终末事件发生。在实际中,精确观察潜在事件往往是不可能的,这使得对这个过程进行推断变得困难。为了解决这个问题,我们提出了一个针对潜在事件和终末事件未观察到的发生时间的联合模型,这两个事件通过基线风险联系起来。协变量以参数形式作为线性组合进入模型,这些线性组合分别乘以潜在事件的风险以及在潜在事件发生条件下终末事件的风险。我们在假设潜在事件可观察的情况下推导了这个问题的部分似然估计量,并提出了一种基于轮廓似然的方法用于在潜在事件不可观察时进行估计。在这种情况下,基线风险使用期望最大化(EM)算法进行非参数估计,该算法在每次迭代时都能得到闭式的布雷斯洛(Breslow)型估计量,与直接最大化边际似然相比,提高了计算效率和稳定性。我们进行了模拟研究以说明该方法的有限样本性质;其在实际中的应用通过对一个前列腺癌数据集的分析得到了展示。