Suppr超能文献

存在潜在进展事件时的半参数生存时间建模。

Semiparametric time-to-event modeling in the presence of a latent progression event.

作者信息

Rice John D, Tsodikov Alex

机构信息

Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, U.S.A.

出版信息

Biometrics. 2017 Jun;73(2):463-472. doi: 10.1111/biom.12580. Epub 2016 Aug 24.

Abstract

In cancer research, interest frequently centers on factors influencing a latent event that must precede a terminal event. In practice it is often impossible to observe the latent event precisely, making inference about this process difficult. To address this problem, we propose a joint model for the unobserved time to the latent and terminal events, with the two events linked by the baseline hazard. Covariates enter the model parametrically as linear combinations that multiply, respectively, the hazard for the latent event and the hazard for the terminal event conditional on the latent one. We derive the partial likelihood estimators for this problem assuming the latent event is observed, and propose a profile likelihood-based method for estimation when the latent event is unobserved. The baseline hazard in this case is estimated nonparametrically using the EM algorithm, which allows for closed-form Breslow-type estimators at each iteration, bringing improved computational efficiency and stability compared with maximizing the marginal likelihood directly. We present simulation studies to illustrate the finite-sample properties of the method; its use in practice is demonstrated in the analysis of a prostate cancer data set.

摘要

在癌症研究中,关注点常常集中在影响一个潜在事件的因素上,而这个潜在事件必须先于一个终末事件发生。在实际中,精确观察潜在事件往往是不可能的,这使得对这个过程进行推断变得困难。为了解决这个问题,我们提出了一个针对潜在事件和终末事件未观察到的发生时间的联合模型,这两个事件通过基线风险联系起来。协变量以参数形式作为线性组合进入模型,这些线性组合分别乘以潜在事件的风险以及在潜在事件发生条件下终末事件的风险。我们在假设潜在事件可观察的情况下推导了这个问题的部分似然估计量,并提出了一种基于轮廓似然的方法用于在潜在事件不可观察时进行估计。在这种情况下,基线风险使用期望最大化(EM)算法进行非参数估计,该算法在每次迭代时都能得到闭式的布雷斯洛(Breslow)型估计量,与直接最大化边际似然相比,提高了计算效率和稳定性。我们进行了模拟研究以说明该方法的有限样本性质;其在实际中的应用通过对一个前列腺癌数据集的分析得到了展示。

相似文献

1
Semiparametric time-to-event modeling in the presence of a latent progression event.
Biometrics. 2017 Jun;73(2):463-472. doi: 10.1111/biom.12580. Epub 2016 Aug 24.
2
Joint analysis of time-to-event and multiple binary indicators of latent classes.
Biometrics. 2004 Mar;60(1):85-92. doi: 10.1111/j.0006-341X.2004.00141.x.
3
A semiparametric joint model for cluster size and subunit-specific interval-censored outcomes.
Biometrics. 2023 Sep;79(3):2010-2022. doi: 10.1111/biom.13795. Epub 2022 Dec 15.
4
Analysis of interval-censored recurrent event processes subject to resolution.
Biom J. 2015 Sep;57(5):725-42. doi: 10.1002/bimj.201400162. Epub 2015 Jul 7.
5
On computation of semiparametric maximum likelihood estimators with shape constraints.
Biometrics. 2021 Mar;77(1):113-124. doi: 10.1111/biom.13266. Epub 2020 Apr 27.
6
Cox regression with missing covariate data using a modified partial likelihood method.
Lifetime Data Anal. 2016 Oct;22(4):570-88. doi: 10.1007/s10985-015-9351-y. Epub 2015 Oct 22.
8
Semiparametric transformation models for interval-censored data in the presence of a cure fraction.
Biom J. 2019 Jan;61(1):203-215. doi: 10.1002/bimj.201700304. Epub 2018 Nov 25.
10
Semiparametric model and inference for spontaneous abortion data with a cured proportion and biased sampling.
Biostatistics. 2018 Jan 1;19(1):54-70. doi: 10.1093/biostatistics/kxx024.

引用本文的文献

1
Efficiency of the Breslow estimator in semiparametric transformation models.
Lifetime Data Anal. 2024 Apr;30(2):291-309. doi: 10.1007/s10985-023-09611-w. Epub 2023 Nov 26.

本文引用的文献

1
Joint modeling approach for semicompeting risks data with missing nonterminal event status.
Lifetime Data Anal. 2014 Oct;20(4):563-83. doi: 10.1007/s10985-013-9288-y. Epub 2014 Jan 16.
2
Semiparametric regression analysis for time-to-event marked endpoints in cancer studies.
Biostatistics. 2014 Jul;15(3):513-25. doi: 10.1093/biostatistics/kxt056. Epub 2013 Dec 29.
3
Semiparametric models: a generalized self-consistency approach.
J R Stat Soc Series B Stat Methodol. 2003 Aug 1;65(3):759-774. doi: 10.1111/1467-9868.00414.
4
Joint modeling of progression-free survival and death in advanced cancer clinical trials.
Stat Med. 2010 Jul 20;29(16):1724-34. doi: 10.1002/sim.3918.
6
Profile information matrix for nonlinear transformation models.
Lifetime Data Anal. 2007 Mar;13(1):139-59. doi: 10.1007/s10985-006-9023-z.
10
Levamisole and fluorouracil for adjuvant therapy of resected colon carcinoma.
N Engl J Med. 1990 Feb 8;322(6):352-8. doi: 10.1056/NEJM199002083220602.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验