Data Analytics Branch, Division of Cancer Control and Population Sciences, National Cancer Institute, 9609 Medical Center Drive, Rockville, MD, 20850, USA.
Department of Biostatistics, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, 48105, USA.
Lifetime Data Anal. 2024 Apr;30(2):291-309. doi: 10.1007/s10985-023-09611-w. Epub 2023 Nov 26.
Semiparametric transformation models for failure time data consist of a parametric regression component and an unspecified cumulative baseline hazard. The nonparametric maximum likelihood estimator (NPMLE) of the cumulative baseline hazard can be summarized in terms of weights introduced into a Breslow-type estimator (Weighted Breslow). At any given time point, the weights invoke an integral over the future of the cumulative baseline hazard, which presents theoretical and computational challenges. A simpler non-MLE Breslow-type estimator (Breslow) was derived earlier from a martingale estimating equation (MEE) setting observed and expected counts of failures equal, conditional on the past history. Despite much successful theoretical and computational development, the simpler Breslow estimator continues to be commonly used as a compromise between simplicity and perceived loss of full efficiency. In this paper we derive the relative efficiency of the Breslow estimator and consider the properties of the two estimators using simulations and real data on prostate cancer survival.
用于失效时间数据的半参数变换模型由参数回归分量和未指定的累积基线风险组成。累积基线风险的非参数最大似然估计量(NPMLE)可以用引入 Breslow 型估计量(加权 Breslow)的权重来总结。在任何给定的时间点,权重都会对未来的累积基线风险进行积分,这带来了理论和计算上的挑战。早期,从一个鞅估计方程(MEE)的设置中推导出了一个更简单的非最大似然 Breslow 型估计量(Breslow),该设置使观察到的和预期的失效计数相等,条件是过去的历史。尽管在理论和计算方面取得了很大的成功,但更简单的 Breslow 估计量仍然被广泛用作简单性和全效率损失之间的折衷。在本文中,我们推导出了 Breslow 估计量的相对效率,并使用前列腺癌生存的模拟数据和实际数据来考虑这两个估计量的性质。