Inouye David I, Ravikumar Pradeep, Dhillon Inderjit S
Dept. of Computer Science, University of Texas, Austin, TX 78712, USA.
JMLR Workshop Conf Proc. 2016 Jun;48:2445-2453.
We develop Square Root Graphical Models (SQR), a novel class of parametric graphical models that provides multivariate generalizations of univariate exponential family distributions. Previous multivariate graphical models (Yang et al., 2015) did not allow positive dependencies for the exponential and Poisson generalizations. However, in many real-world datasets, variables clearly have positive dependencies. For example, the airport delay time in New York-modeled as an exponential distribution-is positively related to the delay time in Boston. With this motivation, we give an example of our model class derived from the univariate exponential distribution that allows for almost arbitrary positive and negative dependencies with only a mild condition on the parameter matrix-a condition akin to the positive definiteness of the Gaussian covariance matrix. Our Poisson generalization allows for both positive and negative dependencies without any constraints on the parameter values. We also develop parameter estimation methods using node-wise regressions with regularization and likelihood approximation methods using sampling. Finally, we demonstrate our exponential generalization on a synthetic dataset and a real-world dataset of airport delay times.
我们开发了平方根图形模型(SQR),这是一类新颖的参数化图形模型,它提供了单变量指数族分布的多变量推广。先前的多变量图形模型(Yang等人,2015)对于指数和泊松推广不允许正相关。然而,在许多现实世界的数据集中,变量显然具有正相关。例如,纽约的机场延误时间(建模为指数分布)与波士顿的延误时间呈正相关。出于这个动机,我们给出了一个从单变量指数分布导出的模型类的示例,该模型类允许几乎任意的正相关和负相关,只需对参数矩阵有一个温和的条件——这个条件类似于高斯协方差矩阵的正定条件。我们的泊松推广允许正相关和负相关,而对参数值没有任何限制。我们还开发了使用带正则化的节点式回归的参数估计方法以及使用采样的似然近似方法。最后,我们在一个合成数据集和一个机场延误时间的现实世界数据集上展示了我们的指数推广。