Suppr超能文献

用于计数的非参数图形模型。

Nonparametric graphical model for counts.

作者信息

Roy Arkaprava, Dunson David B

机构信息

Department of Biostatistics, University of Florida, Gainesville, FL 32603, USA.

Department of Statistics, Duke University, Durham, NC 27708-0251, USA.

出版信息

J Mach Learn Res. 2020 Dec;21.

Abstract

Although multivariate count data are routinely collected in many application areas, there is surprisingly little work developing flexible models for characterizing their dependence structure. This is particularly true when interest focuses on inferring the conditional independence graph. In this article, we propose a new class of pairwise Markov random field-type models for the joint distribution of a multivariate count vector. By employing a novel type of transformation, we avoid restricting to non-negative dependence structures or inducing other restrictions through truncations. Taking a Bayesian approach to inference, we choose a Dirichlet process prior for the distribution of a random effect to induce great flexibility in the specification. An efficient Markov chain Monte Carlo (MCMC) algorithm is developed for posterior computation. We prove various theoretical properties, including posterior consistency, and show that our COunt Nonparametric Graphical Analysis (CONGA) approach has good performance relative to competitors in simulation studies. The methods are motivated by an application to neuron spike count data in mice.

摘要

尽管在许多应用领域中经常会收集多变量计数数据,但令人惊讶的是,针对刻画其依赖结构开发灵活模型的工作却很少。当关注点集中在推断条件独立图时,情况尤其如此。在本文中,我们针对多变量计数向量的联合分布提出了一类新的成对马尔可夫随机场型模型。通过采用一种新型变换,我们避免了局限于非负依赖结构或通过截断引入其他限制。采用贝叶斯推断方法,我们为随机效应的分布选择狄利克雷过程先验,以在模型设定中引入极大的灵活性。开发了一种高效的马尔可夫链蒙特卡罗(MCMC)算法用于后验计算。我们证明了各种理论性质,包括后验一致性,并表明我们的计数非参数图形分析(CONGA)方法在模拟研究中相对于竞争对手具有良好的性能。这些方法是由对小鼠神经元尖峰计数数据的应用所推动的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/25fe/7821699/6c4979f7b4e6/nihms-1656517-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验