Talluri Rajesh, Baladandayuthapani Veerabhadran, Mallick Bani K
The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
Texas A&M University, College Station TX, USA.
Stat. 2014 Jan 1;3(1):109-125. doi: 10.1002/sta4.49.
We propose Bayesian methods for Gaussian graphical models that lead to sparse and adaptively shrunk estimators of the precision (inverse covariance) matrix. Our methods are based on lasso-type regularization priors leading to parsimonious parameterization of the precision matrix, which is essential in several applications involving learning relationships among the variables. In this context, we introduce a novel type of selection prior that develops a sparse structure on the precision matrix by making most of the elements exactly zero, in addition to ensuring positive definiteness - thus conducting model selection and estimation simultaneously. More importantly, we extend these methods to analyze clustered data using finite mixtures of Gaussian graphical model and infinite mixtures of Gaussian graphical models. We discuss appropriate posterior simulation schemes to implement posterior inference in the proposed models, including the evaluation of normalizing constants that are functions of parameters of interest, which result from the restriction of positive definiteness on the correlation matrix. We evaluate the operating characteristics of our method via several simulations and demonstrate the application to real data examples in genomics.
我们提出了用于高斯图形模型的贝叶斯方法,该方法可得到精度(逆协方差)矩阵的稀疏且自适应收缩的估计量。我们的方法基于lasso型正则化先验,从而实现精度矩阵的简约参数化,这在涉及学习变量之间关系的多个应用中至关重要。在此背景下,我们引入了一种新型的选择先验,除了确保正定之外,通过使大多数元素恰好为零,在精度矩阵上形成稀疏结构,从而同时进行模型选择和估计。更重要的是,我们将这些方法扩展到使用高斯图形模型的有限混合和高斯图形模型的无限混合来分析聚类数据。我们讨论了在所提出的模型中实施后验推断的适当后验模拟方案,包括对作为感兴趣参数函数的归一化常数的评估,这是由相关矩阵上的正定限制所导致的。我们通过多次模拟评估了我们方法的操作特性,并展示了其在基因组学实际数据示例中的应用。