Fleck David, Mundt Nadine, Bruentgens Felicitas, Geilenkirchen Petra, Machado Patricia A, Veitinger Thomas, Veitinger Sophie, Lipartowski Susanne M, Engelhardt Corinna H, Oldiges Marco, Spehr Jennifer, Spehr Marc
Department of Chemosensation, Institute for Biology II, RWTH Aachen University, D-52074 Aachen, Germany.
Institute of Bio- and Geosciences (IBG), IBG-1: Biotechnology, Research Center Jülich, D-52425 Jülich, Germany.
J Gen Physiol. 2016 Sep;148(3):253-71. doi: 10.1085/jgp.201611636.
Spermatogenesis ranks among the most complex, yet least understood, developmental processes. The physiological principles that control male germ cell development in mammals are notoriously difficult to unravel, given the intricate anatomy and complex endo- and paracrinology of the testis. Accordingly, we lack a conceptual understanding of the basic signaling mechanisms within the testis, which control the seminiferous epithelial cycle and thus govern spermatogenesis. Here, we address paracrine signal transduction in undifferentiated male germ cells from an electrophysiological perspective. We identify distinct purinergic signaling pathways in prepubescent mouse spermatogonia, both in vitro and in situ. ATP-a dynamic, widespread, and evolutionary conserved mediator of cell to cell communication in various developmental contexts-activates at least two different spermatogonial purinoceptor isoforms. Both receptors operate within nonoverlapping stimulus concentration ranges, display distinct response kinetics and, in the juvenile seminiferous cord, are uniquely expressed in spermatogonia. We further find that spermatogonia express Ca(2+)-activated large-conductance K(+) channels that appear to function as a safeguard against prolonged ATP-dependent depolarization. Quantitative purine measurements additionally suggest testicular ATP-induced ATP release, a mechanism that could increase the paracrine radius of initially localized signaling events. Moreover, we establish a novel seminiferous tubule slice preparation that allows targeted electrophysiological recordings from identified testicular cell types in an intact epithelial environment. This unique approach not only confirms our in vitro findings, but also supports the notion of purinergic signaling during the early stages of spermatogenesis.
精子发生是最复杂但却最不为人所了解的发育过程之一。鉴于睾丸复杂的解剖结构以及其内分泌和旁分泌系统,控制哺乳动物雄性生殖细胞发育的生理机制极难阐明。因此,我们对睾丸内控制生精上皮周期进而调控精子发生的基本信号传导机制缺乏概念性的理解。在此,我们从电生理学角度研究未分化雄性生殖细胞中的旁分泌信号转导。我们在体外和原位条件下,在青春期前小鼠精原细胞中鉴定出不同的嘌呤能信号通路。ATP是一种在各种发育环境中广泛存在且进化保守的细胞间通讯动态介质,它能激活至少两种不同的精原细胞嘌呤受体亚型。这两种受体在不重叠的刺激浓度范围内发挥作用,表现出不同的反应动力学,并且在幼年生精小管中,仅在精原细胞中特异性表达。我们还发现精原细胞表达钙激活的大电导钾通道,这些通道似乎起到防止ATP依赖性长时间去极化的保护作用。嘌呤定量测量还表明睾丸ATP可诱导ATP释放,这一机制可能会增加初始局部信号事件的旁分泌半径。此外,我们建立了一种新型的生精小管切片制备方法,该方法能够在完整的上皮环境中对特定睾丸细胞类型进行靶向电生理记录。这种独特的方法不仅证实了我们的体外研究结果,还支持了精子发生早期存在嘌呤能信号传导的观点。