Suppr超能文献

广泛的外代谢组分析揭示了各种微生物中扩展的溢出代谢。

Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms.

机构信息

Institute of Bio- and Geosciences, Biotechnology, Systems Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany.

出版信息

Microb Cell Fact. 2012 Sep 11;11:122. doi: 10.1186/1475-2859-11-122.

Abstract

Overflow metabolism is well known for yeast, bacteria and mammalian cells. It typically occurs under glucose excess conditions and is characterized by excretions of by-products such as ethanol, acetate or lactate. This phenomenon, also denoted the short-term Crabtree effect, has been extensively studied over the past few decades, however, its basic regulatory mechanism and functional role in metabolism is still unknown. Here we present a comprehensive quantitative and time-dependent analysis of the exometabolome of Escherichia coli, Corynebacterium glutamicum, Bacillus licheniformis, and Saccharomyces cerevisiae during well-controlled bioreactor cultivations. Most surprisingly, in all cases a great diversity of central metabolic intermediates and amino acids is found in the culture medium with extracellular concentrations varying in the micromolar range. Different hypotheses for these observations are formulated and experimentally tested. As a result, the intermediates in the culture medium during batch growth must originate from passive or active transportation due to a new phenomenon termed "extended" overflow metabolism. Moreover, we provide broad evidence that this could be a common feature of all microorganism species when cultivated under conditions of carbon excess and non-inhibited carbon uptake. In turn, this finding has consequences for metabolite balancing and, particularly, for intracellular metabolite quantification and (13)C-metabolic flux analysis.

摘要

细胞overflow 代谢是酵母、细菌和哺乳动物细胞的一个众所周知的现象。它通常在葡萄糖过量的条件下发生,其特征是副产物如乙醇、乙酸或乳酸的排泄。这种现象也被称为短期 Crabtree 效应,在过去几十年中得到了广泛的研究,然而,其在代谢中的基本调节机制和功能作用仍然未知。在这里,我们对大肠杆菌、谷氨酸棒杆菌、地衣芽孢杆菌和酿酒酵母在严格控制的生物反应器培养过程中的外代谢组进行了全面的定量和时变分析。最令人惊讶的是,在所有情况下,在培养基中都发现了大量的中心代谢中间产物和氨基酸,其细胞外浓度在微摩尔范围内变化。对这些观察结果提出了不同的假设,并进行了实验验证。结果表明,由于一种新的现象称为“扩展”overflow 代谢,培养基中的中间产物必须来源于被动或主动运输。此外,我们提供了广泛的证据表明,当在碳过量和非抑制性碳摄取条件下培养时,这可能是所有微生物物种的共同特征。反过来,这一发现对代谢物平衡,特别是对细胞内代谢物定量和(13)C 代谢通量分析有影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1988/3526501/9bfe47e9f7c4/1475-2859-11-122-1.jpg

相似文献

1
Extensive exometabolome analysis reveals extended overflow metabolism in various microorganisms.
Microb Cell Fact. 2012 Sep 11;11:122. doi: 10.1186/1475-2859-11-122.
2
Metabolite secretion in microorganisms: the theory of metabolic overflow put to the test.
Metabolomics. 2018 Mar 2;14(4):43. doi: 10.1007/s11306-018-1339-7.
6
Beyond growth rate 0.6: What drives Corynebacterium glutamicum to higher growth rates in defined medium.
Biotechnol Bioeng. 2014 Feb;111(2):359-71. doi: 10.1002/bit.25103. Epub 2013 Sep 24.
9
Comparison of metabolic profiles of yeasts based on the difference of the Crabtree positive and negative.
J Biosci Bioeng. 2020 Jan;129(1):52-58. doi: 10.1016/j.jbiosc.2019.07.007. Epub 2019 Sep 16.

引用本文的文献

1
A transient mutational burst occurs during yeast colony development.
Mol Syst Biol. 2025 Jun 9. doi: 10.1038/s44320-025-00117-1.
2
Two routes for tyrosol production by metabolic engineering of Corynebacterium glutamicum.
Biotechnol Biofuels Bioprod. 2025 Apr 5;18(1):43. doi: 10.1186/s13068-025-02641-6.
3
A process-based dynamic model for succicinic acid production by : regulatory role of ATP/ADP balance.
Front Microbiol. 2025 Mar 6;16:1512982. doi: 10.3389/fmicb.2025.1512982. eCollection 2025.
4
Exploring interspecific interaction variability in microbiota: A review.
Eng Microbiol. 2024 Nov 9;4(4):100178. doi: 10.1016/j.engmic.2024.100178. eCollection 2024 Dec.
5
Rapid exometabolome footprinting combined with multivariate statistics: A powerful tool for bioprocess optimization.
Eng Life Sci. 2024 Mar 5;25(2):2300222. doi: 10.1002/elsc.202300222. eCollection 2025 Feb.
6
A thermodynamic bottleneck in the TCA cycle contributes to acetate overflow in .
mSphere. 2025 Jan 28;10(1):e0088324. doi: 10.1128/msphere.00883-24. Epub 2024 Dec 31.
7
Selective production of the itaconic acid-derived compounds 2-hydroxyparaconic and itatartaric acid.
Metab Eng Commun. 2024 Nov 16;19:e00252. doi: 10.1016/j.mec.2024.e00252. eCollection 2024 Dec.
8
A thermodynamic bottleneck in the TCA cycle contributes to acetate overflow in .
bioRxiv. 2024 Oct 18:2024.10.16.618751. doi: 10.1101/2024.10.16.618751.
9
A master regulator of central carbon metabolism directly activates virulence gene expression in attaching and effacing pathogens.
PLoS Pathog. 2024 Oct 15;20(10):e1012451. doi: 10.1371/journal.ppat.1012451. eCollection 2024 Oct.
10
Enhanced metabolic entanglement emerges during the evolution of an interkingdom microbial community.
Nat Commun. 2024 Aug 22;15(1):7238. doi: 10.1038/s41467-024-51702-1.

本文引用的文献

2
Improved L-lysine production with Corynebacterium glutamicum and systemic insight into citrate synthase flux and activity.
Biotechnol Bioeng. 2012 Aug;109(8):2070-81. doi: 10.1002/bit.24486. Epub 2012 Mar 22.
3
Regulation of membrane protein degradation by starvation-response pathways.
Traffic. 2012 Mar;13(3):468-82. doi: 10.1111/j.1600-0854.2011.01314.x. Epub 2012 Jan 8.
4
Collisional fragmentation of central carbon metabolites in LC-MS/MS increases precision of ¹³C metabolic flux analysis.
Biotechnol Bioeng. 2012 Mar;109(3):763-71. doi: 10.1002/bit.24344. Epub 2011 Oct 28.
5
Acetate scavenging activity in Escherichia coli: interplay of acetyl-CoA synthetase and the PEP-glyoxylate cycle in chemostat cultures.
Appl Microbiol Biotechnol. 2012 Mar;93(5):2109-24. doi: 10.1007/s00253-011-3536-4. Epub 2011 Sep 1.
6
The benefits of being transient: isotope-based metabolic flux analysis at the short time scale.
Appl Microbiol Biotechnol. 2011 Sep;91(5):1247-65. doi: 10.1007/s00253-011-3390-4. Epub 2011 Jul 6.
9
Stationary versus non-stationary (13)C-MFA: a comparison using a consistent dataset.
J Biotechnol. 2011 Jul 10;154(2-3):179-90. doi: 10.1016/j.jbiotec.2010.07.008. Epub 2010 Jul 16.
10
Development and application of a differential method for reliable metabolome analysis in Escherichia coli.
Anal Biochem. 2009 Mar 1;386(1):9-19. doi: 10.1016/j.ab.2008.11.018. Epub 2008 Nov 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验