Castellazzi Pascal, Martel Richard, Galloway Devin L, Longuevergne Laurent, Rivera Alfonso
Institut national de la recherche scientifique, Centre Eau, Terre et Environnement, Université du Québec, 490 rue de la Couronne, Québec, QC, Canada G1K 9A9.
United States Geological Survey, Water Science Field Team - West, 5957 Lakeside Boulevard, Indianapolis, IN 46278-0000.
Ground Water. 2016 Nov;54(6):768-780. doi: 10.1111/gwat.12453. Epub 2016 Aug 30.
In the last decade, remote sensing of the temporal variation of ground level and gravity has improved our understanding of groundwater dynamics and storage. Mass changes are measured by GRACE (Gravity Recovery and Climate Experiment) satellites, whereas ground deformation is measured by processing synthetic aperture radar satellites data using the InSAR (Interferometry of Synthetic Aperture Radar) techniques. Both methods are complementary and offer different sensitivities to aquifer system processes. GRACE is sensitive to mass changes over large spatial scales (more than 100,000 km ). As such, it fails in providing groundwater storage change estimates at local or regional scales relevant to most aquifer systems, and at which most groundwater management schemes are applied. However, InSAR measures ground displacement due to aquifer response to fluid-pressure changes. InSAR applications to groundwater depletion assessments are limited to aquifer systems susceptible to measurable deformation. Furthermore, the inversion of InSAR-derived displacement maps into volume of depleted groundwater storage (both reversible and largely irreversible) is confounded by vertical and horizontal variability of sediment compressibility. During the last decade, both techniques have shown increasing interest in the scientific community to complement available in situ observations where they are insufficient. In this review, we present the theoretical and conceptual bases of each method, and present idealized scenarios to highlight the potential benefits and challenges of combining these techniques to remotely assess groundwater storage changes and other aspects of the dynamics of aquifer systems.
在过去十年中,对地面高程和重力随时间变化的遥感观测增进了我们对地下水动态和储量的理解。质量变化由GRACE(重力恢复与气候实验)卫星测量,而地面变形则通过使用合成孔径雷达干涉测量(InSAR)技术处理合成孔径雷达卫星数据来测量。这两种方法相辅相成,对含水层系统过程具有不同的敏感性。GRACE对大空间尺度(超过100,000平方公里)的质量变化敏感。因此,它无法在与大多数含水层系统相关的局部或区域尺度上提供地下水储量变化估计,而大多数地下水管理方案正是在这些尺度上应用的。然而,InSAR测量由于含水层对流体压力变化的响应而产生的地面位移。InSAR在地下水枯竭评估中的应用仅限于易受可测量变形影响的含水层系统。此外,将InSAR得出的位移图反演为枯竭地下水储量的体积(包括可逆和基本不可逆的体积)会受到沉积物压缩性的垂直和水平变化的干扰。在过去十年中,这两种技术在科学界越来越受到关注,以补充实地观测不足的情况。在本综述中,我们介绍了每种方法的理论和概念基础,并提出了理想化的情景,以突出将这些技术结合起来远程评估地下水储量变化和含水层系统动态其他方面的潜在益处和挑战。