Geohazards InSAR Laboratory and Modeling Group (InSARlab), Geoscience Research Department, Geological Survey of Spain (IGME), Alenza 1, 28003 Madrid, Spain; Spanish Working Group on Ground Subsidence (SUBTER), UNESCO, 03690 Alicante, Spain; Universidad Politécnica de Madrid. ETSI Caminos, Canales y Puertos C/Profesor Aranguren s/n, 28040 Madrid, Spain.
Geohazards InSAR Laboratory and Modeling Group (InSARlab), Geoscience Research Department, Geological Survey of Spain (IGME), Alenza 1, 28003 Madrid, Spain; Spanish Working Group on Ground Subsidence (SUBTER), UNESCO, 03690 Alicante, Spain; Research Partnership Unit IGME-UA on Radar Interferometry Applied to Ground Deformation (UNIRAD), University of Alicante, P.O. Box 99, 03080 Alicante, Spain; Departamento de Ingeniería Civil, Escuela Politécnica Superior, Universidad de Alicante, P.O. Box 99, 03080 Alicante, Spain.
Sci Total Environ. 2020 Feb 10;703:134757. doi: 10.1016/j.scitotenv.2019.134757. Epub 2019 Nov 2.
Aquifer-systems have become a strategic source of fresh water in the present climatic conditions, especially under stress in arid regions like the Iberian Mediterranean Arc. Understanding the behavior of groundwater reservoirs is crucial to their well-management and mitigation of adverse consequences of overexploitation. In this work, we use space geodetic measurements from satellite interferometric synthetic aperture radar (InSAR) and Global Positioning System (GPS) data, covering the period 2011-2017, to predict and validate the ground surface displacement over the fastest subsiding basin due to groundwater withdrawal in Europe (>10 cm/year). The 2D decomposition of InSAR displacements from Cosmo-SkyMed and Sentinel-1 satellites allows us to detect horizontal deformation towards the basin center, with a maximum displacement of 1.5 cm/year. InSAR results were introduced in a newly developed methodology for aquifer system management to estimate unknown pumping rates for the 2012-2017 period. This study illustrates how the combination of InSAR data, groundwater flow and deformation models can be used to improve the aquifer-systems sustainable management.
含水层系统已成为当前气候条件下淡水的战略来源,特别是在伊比利亚地中海弧形干旱地区等面临压力的地区。了解地下水储层的行为对于它们的良好管理以及缓解过度开采的不利后果至关重要。在这项工作中,我们使用了卫星干涉合成孔径雷达(InSAR)和全球定位系统(GPS)数据的空间大地测量测量,涵盖了 2011-2017 年的时间,以预测和验证欧洲因地下水开采而沉降最快的盆地的地面位移(>10cm/年)。Cosmo-SkyMed 和 Sentinel-1 卫星的 InSAR 位移的 2D 分解使我们能够检测到朝向盆地中心的水平变形,最大位移为 1.5cm/年。InSAR 结果被引入到新开发的含水层系统管理方法中,以估算 2012-2017 年期间未知的抽水量。这项研究说明了如何将 InSAR 数据、地下水流动和变形模型相结合,以改善含水层系统的可持续管理。