Department of Chemistry , University of British Columbia , 2036 Main Mall , Vancouver , British Columbia V6T 1Z1 , Canada.
Division of Biomedical Engineering, School of Engineering , University of Glasgow , Glasgow G12 8LT , U.K.
ACS Chem Biol. 2018 Jul 20;13(7):1752-1766. doi: 10.1021/acschembio.7b01022. Epub 2018 Feb 20.
Fluorescence is a powerful and sensitive tool in biological detection, used widely for cellular imaging and in vitro molecular diagnostics. Over time, three prominent conventions have emerged in the design of fluorescent biosensors: a sensor is ideally specific for its target, only one fluorescence signal turns on or off in response to the target, and each target requires its own sensor and signal combination. These are conventions but not requirements, and sensors that break with one or more of these conventions can offer new capabilities and advantages. Here, we review "unconventional" fluorescent sensor configurations based on fluorescent dyes, proteins, and nanomaterials such as quantum dots and metal nanoclusters. These configurations include multifluorophore Förster resonance energy transfer (FRET) networks, temporal multiplexing, photonic logic, and cross-reactive arrays or "noses". The more complex but carefully engineered biorecognition and fluorescence signaling modalities in unconventional designs are richer in information, afford greater multiplexing capacity, and are potentially better suited to the analysis of complex biological samples, interactions, processes, and diseases. We conclude with a short perspective on the future of unconventional fluorescent sensors and encourage researchers to imagine sensing beyond the metaphorical light bulb and light switch combination.
荧光是生物检测中一种强大而灵敏的工具,广泛用于细胞成像和体外分子诊断。随着时间的推移,荧光生物传感器的设计出现了三个突出的惯例:传感器理想上是针对其目标物特异性的,只有一个荧光信号会根据目标物打开或关闭,并且每个目标物都需要自己的传感器和信号组合。这些是惯例,但不是要求,打破其中一个或多个惯例的传感器可以提供新的功能和优势。在这里,我们回顾了基于荧光染料、蛋白质和纳米材料(如量子点和金属纳米团簇)的“非常规”荧光传感器配置。这些配置包括多荧光团Förster 共振能量转移(FRET)网络、时间复用、光子逻辑和交叉反应阵列或“鼻子”。在非常规设计中,更复杂但经过精心设计的生物识别和荧光信号转导方式在信息丰富度、多重化能力方面更具优势,并且更适合分析复杂的生物样本、相互作用、过程和疾病。最后,我们对非常规荧光传感器的未来进行了简短的展望,并鼓励研究人员超越隐喻的灯泡和开关组合来想象传感。
Acc Chem Res. 2016-9-1
Adv Exp Med Biol. 2012
Biosens Bioelectron. 2016-2-8
Methods Enzymol. 2017
Int J Nanomedicine. 2022
Micromachines (Basel). 2018-9-11
Angew Chem Int Ed Engl. 2019-2-20