Kimura M, Ohta T
Proc Natl Acad Sci U S A. 1978 Jun;75(6):2868-72. doi: 10.1073/pnas.75.6.2868.
A mathematical theory is developed that enables us to derive a formula for the equilibrium distribution of allelic frequencies in a finite population when selectively neutral alleles are produced in stepwise fashion (stepwise mutation model). It is shown that the stepwise mutation model has a remarkable property that distinguishes it from the conventional infinite allele model (Kimura-Crow model): as the population size increases indefinitely while the product of the effective population size and the mutation rate is kept at a fixed value, the mean number of different alleles contained in the population rapidly reaches a plateau which is not much larger than the effective number of alleles (reciprocal of homozygosity).
我们发展了一种数学理论,该理论使我们能够推导出一个公式,用于描述在有限群体中,当选择性中性等位基因以逐步方式产生时(逐步突变模型)等位基因频率的平衡分布。结果表明,逐步突变模型具有一个显著特性,使其有别于传统的无限等位基因模型(木村-克劳模型):当群体大小无限增加,而有效群体大小与突变率的乘积保持固定值时,群体中所含不同等位基因的平均数会迅速达到一个平稳状态,该平稳状态比有效等位基因数(纯合度的倒数)大不了多少。