White Ronald J
Montana Tech, Butte, Montana
Physiol Rep. 2016 Sep;4(17). doi: 10.14814/phy2.12945.
A class of steady-state compartmental models of the circulation is examined and it is shown that the mathematical problem for this model class involves a single nonlinear equation. In an important subclass and with certain assumptions regarding the form of the Starling-type cardiac function curves, the single equation is of the form Z = μ + λ log[(1 - Z)/Z] where μ and λ are mathematical parameters related to the physiological parameters of the system and Z is proportional to the cardiac output. This result holds regardless of the number and arrangement of compartments within the model itself or of the number of physiological parameters the model contains. An example of this class with 25 physiological parameters is presented to illustrate this approach.
研究了一类循环的稳态房室模型,结果表明该模型类的数学问题涉及一个单一的非线性方程。在一个重要的子类别中,并对斯塔林型心脏功能曲线的形式做出某些假设时,该单一方程的形式为Z = μ + λ log[(1 - Z)/Z],其中μ和λ是与系统生理参数相关的数学参数,且Z与心输出量成正比。无论模型本身内房室的数量和排列如何,也无论模型包含的生理参数数量如何,该结果均成立。给出了一个包含25个生理参数的此类模型示例来说明这种方法。