Suppr超能文献

虚拟患者与血压调节的盖顿模型的灵敏度分析:迈向全身生理学的个体化模型。

Virtual patients and sensitivity analysis of the Guyton model of blood pressure regulation: towards individualized models of whole-body physiology.

机构信息

IR4M UMR8081 CNRS, Université Paris-Sud, Orsay, France.

出版信息

PLoS Comput Biol. 2012;8(6):e1002571. doi: 10.1371/journal.pcbi.1002571. Epub 2012 Jun 28.

Abstract

Mathematical models that integrate multi-scale physiological data can offer insight into physiological and pathophysiological function, and may eventually assist in individualized predictive medicine. We present a methodology for performing systematic analyses of multi-parameter interactions in such complex, multi-scale models. Human physiology models are often based on or inspired by Arthur Guyton's whole-body circulatory regulation model. Despite the significance of this model, it has not been the subject of a systematic and comprehensive sensitivity study. Therefore, we use this model as a case study for our methodology. Our analysis of the Guyton model reveals how the multitude of model parameters combine to affect the model dynamics, and how interesting combinations of parameters may be identified. It also includes a "virtual population" from which "virtual individuals" can be chosen, on the basis of exhibiting conditions similar to those of a real-world patient. This lays the groundwork for using the Guyton model for in silico exploration of pathophysiological states and treatment strategies. The results presented here illustrate several potential uses for the entire dataset of sensitivity results and the "virtual individuals" that we have generated, which are included in the supplementary material. More generally, the presented methodology is applicable to modern, more complex multi-scale physiological models.

摘要

整合多尺度生理数据的数学模型可以深入了解生理和病理生理功能,并且最终可能有助于实现个体化的预测医学。我们提出了一种方法,用于对这种复杂的多尺度模型中的多参数相互作用进行系统分析。人体生理学模型通常基于或受到亚瑟·盖顿(Arthur Guyton)全身循环调节模型的启发。尽管该模型具有重要意义,但它尚未成为系统和全面敏感性研究的主题。因此,我们将该模型用作我们方法的案例研究。我们对盖顿模型的分析揭示了模型参数的多样性如何组合影响模型动力学,以及如何识别有趣的参数组合。它还包括一个“虚拟人群”,可以根据与真实世界患者相似的条件从中选择“虚拟个体”。这为使用盖顿模型进行计算机模拟探索病理生理状态和治疗策略奠定了基础。本文介绍的结果说明了我们生成的整个敏感性结果数据集和“虚拟个体”的几种潜在用途,这些内容都包含在补充材料中。更一般地说,所提出的方法适用于现代更复杂的多尺度生理模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc5d/3386164/6827db7f62e9/pcbi.1002571.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验