Ushiba J, Soekadar S R
Faculty of Science and Technology, Keio University, Kohoku-ku, Yokohama, Kanagawa, Japan.
Applied Neurotechnology Laboratory, University Hospital of Tübingen, Tübingen, Germany.
Prog Brain Res. 2016;228:163-83. doi: 10.1016/bs.pbr.2016.04.020. Epub 2016 Jun 29.
Noninvasive brain-machine interfaces (BMIs) are typically associated with neuroprosthetic applications or communication aids developed to assist in daily life after loss of motor function, eg, in severe paralysis. However, BMI technology has recently been found to be a powerful tool to promote neural plasticity facilitating motor recovery after brain damage, eg, due to stroke or trauma. In such BMI paradigms, motor cortical output and input are simultaneously activated, for instance by translating motor cortical activity associated with the attempt to move the paralyzed fingers into actual exoskeleton-driven finger movements, resulting in contingent visual and somatosensory feedback. Here, we describe the rationale and basic principles underlying such BMI motor rehabilitation paradigms and review recent studies that provide new insights into BMI-related neural plasticity and reorganization. Current challenges in clinical implementation and the broader use of BMI technology in stroke neurorehabilitation are discussed.
非侵入性脑机接口(BMI)通常与神经假体应用或为协助运动功能丧失后的日常生活而开发的通信辅助设备相关,例如在严重瘫痪的情况下。然而,最近发现BMI技术是促进神经可塑性的有力工具,有助于脑损伤(如中风或创伤)后的运动恢复。在这种BMI范式中,运动皮层的输出和输入同时被激活,例如通过将与试图移动瘫痪手指相关的运动皮层活动转化为实际的外骨骼驱动的手指运动,从而产生偶然的视觉和体感反馈。在这里,我们描述了这种BMI运动康复范式的基本原理和基本原理,并回顾了最近的研究,这些研究为与BMI相关的神经可塑性和重组提供了新的见解。讨论了临床实施中的当前挑战以及BMI技术在中风神经康复中的更广泛应用。