Suppr超能文献

德国严重上肢轻瘫的中风后康复——迈向脑机接口长期治疗

Post-stroke Rehabilitation of Severe Upper Limb Paresis in Germany - Toward Long-Term Treatment With Brain-Computer Interfaces.

作者信息

Angerhöfer Cornelius, Colucci Annalisa, Vermehren Mareike, Hömberg Volker, Soekadar Surjo R

机构信息

Clinical Neurotechnology Lab, Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, Berlin, Germany.

Department of Neurology, SRH Gesundheitszentrum Bad Wimpfen GmbH, Bad Wimpfen, Germany.

出版信息

Front Neurol. 2021 Nov 18;12:772199. doi: 10.3389/fneur.2021.772199. eCollection 2021.

Abstract

Severe upper limb paresis can represent an immense burden for stroke survivors. Given the rising prevalence of stroke, restoration of severe upper limb motor impairment remains a major challenge for rehabilitation medicine because effective treatment strategies are lacking. Commonly applied interventions in Germany, such as mirror therapy and impairment-oriented training, are limited in efficacy, demanding for new strategies to be found. By translating brain signals into control commands of external devices, brain-computer interfaces (BCIs) and brain-machine interfaces (BMIs) represent promising, neurotechnology-based alternatives for stroke patients with highly restricted arm and hand function. In this mini-review, we outline perspectives on how BCI-based therapy can be integrated into the different stages of neurorehabilitation in Germany to meet a long-term treatment approach: We found that it is most appropriate to start therapy with BCI-based neurofeedback immediately after early rehabilitation. BCI-driven functional electrical stimulation (FES) and BMI robotic therapy are well suited for subsequent post hospital curative treatment in the subacute stage. BCI-based hand exoskeleton training can be continued within outpatient occupational therapy to further improve hand function and address motivational issues in chronic stroke patients. Once the rehabilitation potential is exhausted, BCI technology can be used to drive assistive devices to compensate for impaired function. However, there are several challenges yet to overcome before such long-term treatment strategies can be implemented within broad clinical application: 1. developing reliable BCI systems with better usability; 2. conducting more research to improve BCI training paradigms and 3. establishing reliable methods to identify suitable patients.

摘要

严重的上肢麻痹对中风幸存者来说可能是巨大的负担。鉴于中风患病率不断上升,恢复严重的上肢运动障碍仍然是康复医学面临的一项重大挑战,因为缺乏有效的治疗策略。在德国普遍应用的干预措施,如镜像疗法和以损伤为导向的训练,疗效有限,需要寻找新的策略。通过将脑信号转化为外部设备的控制命令,脑机接口(BCIs)和脑机接口(BMIs)为手臂和手部功能严重受限的中风患者提供了基于神经技术的、有前景的替代方案。在这篇小型综述中,我们概述了基于脑机接口的治疗如何能够融入德国神经康复的不同阶段,以实现长期治疗方法:我们发现,在早期康复后立即开始基于脑机接口的神经反馈治疗最为合适。脑机接口驱动的功能性电刺激(FES)和脑机接口机器人治疗非常适合在亚急性期进行后续的出院后治疗。基于脑机接口的手部外骨骼训练可以在门诊职业治疗中继续进行,以进一步改善手部功能,并解决慢性中风患者的动机问题。一旦康复潜力耗尽,可以使用脑机接口技术来驱动辅助设备,以补偿受损功能。然而,在广泛的临床应用中实施这种长期治疗策略之前,仍有几个挑战需要克服:1. 开发更具可用性的可靠脑机接口系统;2. 进行更多研究以改进脑机接口训练范式;3. 建立识别合适患者的可靠方法。

相似文献

引用本文的文献

8
Advanced rehabilitation in ischaemic stroke research.缺血性脑卒中研究中的高级康复。
Stroke Vasc Neurol. 2024 Aug 27;9(4):328-343. doi: 10.1136/svn-2022-002285.

本文引用的文献

5
Brain networks and their relevance for stroke rehabilitation.脑网络及其与中风康复的相关性。
Clin Neurophysiol. 2019 Jul;130(7):1098-1124. doi: 10.1016/j.clinph.2019.04.004. Epub 2019 Apr 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验