Ulitzsch Esther, Lüdtke Oliver, Robitzsch Alexander
Department of Educational Measurement, Leibniz Institute for Science and Mathematics Education.
Psychol Methods. 2023 Jun;28(3):527-557. doi: 10.1037/met0000435. Epub 2021 Dec 20.
Small sample structural equation modeling (SEM) may exhibit serious estimation problems, such as failure to converge, inadmissible solutions, and unstable parameter estimates. A vast literature has compared the performance of different solutions for small sample SEM in contrast to unconstrained maximum likelihood (ML) estimation. Less is known, however, on the gains and pitfalls of different solutions in contrast to each other. Focusing on three current solutions-constrained ML, Bayesian methods using Markov chain Monte Carlo techniques, and fixed reliability single indicator (SI) approaches-we bridge this gap. When doing so, we evaluate the potential and boundaries of different parameterizations, constraints, and weakly informative prior distributions for improving the quality of the estimation procedure and stabilizing parameter estimates. The performance of all approaches is compared in a simulation study. Under conditions with low reliabilities, Bayesian methods without additional prior information by far outperform constrained ML in terms of accuracy of parameter estimates as well as the worst-performing fixed reliability SI approach and do not perform worse than the best-performing fixed reliability SI approach. Under conditions with high reliabilities, constrained ML shows good performance. Both constrained ML and Bayesian methods exhibit conservative to acceptable Type I error rates. Fixed reliability SI approaches are prone to undercoverage and severe inflation of Type I error rates. Stabilizing effects on Bayesian parameter estimates can be achieved even with mildly incorrect prior information. In an empirical example, we illustrate the practical importance of carefully choosing the method of analysis for small sample SEM. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
小样本结构方程模型(SEM)可能会出现严重的估计问题,如无法收敛、不可接受的解以及不稳定的参数估计。大量文献比较了小样本SEM的不同解决方案与无约束最大似然(ML)估计的性能。然而,对于不同解决方案之间的优缺点却知之甚少。聚焦于当前的三种解决方案——约束ML、使用马尔可夫链蒙特卡罗技术的贝叶斯方法以及固定信度单指标(SI)方法——我们弥补了这一差距。在此过程中,我们评估了不同参数化、约束和弱信息先验分布在提高估计程序质量和稳定参数估计方面的潜力和局限性。在一项模拟研究中比较了所有方法的性能。在信度较低的条件下,没有额外先验信息的贝叶斯方法在参数估计准确性方面远优于约束ML,以及表现最差的固定信度SI方法,且表现不比表现最佳的固定信度SI方法差。在信度较高的条件下,约束ML表现良好。约束ML和贝叶斯方法都表现出保守到可接受的I型错误率。固定信度SI方法容易出现覆盖率不足和I型错误率严重膨胀的情况。即使先验信息略有错误,也能实现对贝叶斯参数估计的稳定作用。在一个实证例子中,我们说明了为小样本SEM仔细选择分析方法的实际重要性。(PsycInfo数据库记录(c)2023美国心理学会,保留所有权利)