Division of Molecular Medicine, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, India.
Division of Biophysics, Bose Institute, P-1/12, CIT Scheme VII M, Kolkata-700054, India.
Sci Rep. 2016 Sep 7;6:32626. doi: 10.1038/srep32626.
p53 preserves genomic integrity by restricting anomaly at the gene level. Till date, limited information is available for cytosol to nuclear shuttling of p53; except microtubule-based trafficking route, which utilizes minus-end directed motor dynein. The present study suggests that monomeric actin (G-actin) guides p53 traffic towards the nucleus. Histidine-tag pull-down assay using purified p53(1-393)-His and G-actin confirms direct physical association between p53 and monomeric G-actin. Co-immunoprecipitation data supports the same. Confocal imaging explores intense perinuclear colocalization between p53 and G-actin. To address atomistic details of the complex, constraint-based docked model of p53:G-actin complex was generated based on crystal structures. MD simulation reveals that p53 DNA-binding domain arrests very well the G-actin protein. Docking benchmark studies have been carried out for a known crystal structure, 1YCS (complex between p53DBD and BP2), which validates the docking protocol we adopted. Co-immunoprecipitation study using "hot-spot" p53 mutants suggested reduced G-actin association with cancer-associated p53 conformational mutants (R175H and R249S). Considering these findings, we hypothesized that point mutation in p53 structure, which diminishes p53:G-actin complexation results in mutant p53 altered subcellular localization. Our model suggests p53Arg249 form polar-contact with Arg357 of G-actin, which upon mutation, destabilizes p53:G-actin interaction and results in cytoplasmic retention of p53R249S.
p53 通过限制基因水平的异常来保持基因组完整性。迄今为止,关于 p53 从细胞质到细胞核的穿梭,仅有少量信息可用;除了基于微管的运输途径外,该途径还利用负向导向的马达动力蛋白 dynein。本研究表明,单体肌动蛋白(G-actin)指导 p53 向核内运输。使用纯化的 p53(1-393)-His 和 G-actin 进行组氨酸标签下拉测定证实了 p53 与单体 G-actin 之间的直接物理关联。共免疫沉淀数据也支持这一点。共聚焦成像探索了 p53 和 G-actin 之间强烈的核周共定位。为了解决复合物的原子细节,基于晶体结构生成了 p53:G-actin 复合物的约束对接模型。MD 模拟表明,p53 DNA 结合域很好地固定了 G-actin 蛋白。对接基准研究已经针对一个已知的晶体结构 1YCS(p53DBD 和 BP2 之间的复合物)进行,这验证了我们采用的对接方案。使用“热点” p53 突变体进行的共免疫沉淀研究表明,与癌症相关的 p53 构象突变体(R175H 和 R249S)与 G-actin 的结合减少。考虑到这些发现,我们假设 p53 结构中的点突变,削弱了 p53:G-actin 复合物的形成,导致突变 p53 的亚细胞定位发生改变。我们的模型表明,p53Arg249 与 G-actin 的 Arg357 形成极性接触,这种接触的突变会使 p53:G-actin 相互作用不稳定,并导致 p53R249S 滞留在细胞质中。