Pereira Ana R, Hsin Jen, Król Ewa, Tavares Andreia C, Flores Pierre, Hoiczyk Egbert, Ng Natalie, Dajkovic Alex, Brun Yves V, VanNieuwenhze Michael S, Roemer Terry, Carballido-Lopez Rut, Scheffers Dirk-Jan, Huang Kerwyn Casey, Pinho Mariana G
Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
Department of Bioengineering, Stanford University, Stanford, California, USA.
mBio. 2016 Sep 6;7(5):e00908-16. doi: 10.1128/mBio.00908-16.
A mechanistic understanding of the determination and maintenance of the simplest bacterial cell shape, a sphere, remains elusive compared with that of more complex shapes. Cocci seem to lack a dedicated elongation machinery, and a spherical shape has been considered an evolutionary dead-end morphology, as a transition from a spherical to a rod-like shape has never been observed in bacteria. Here we show that a Staphylococcus aureus mutant (M5) expressing the ftsZ(G193D) allele exhibits elongated cells. Molecular dynamics simulations and in vitro studies indicate that FtsZ(G193D) filaments are more twisted and shorter than wild-type filaments. In vivo, M5 cell wall deposition is initiated asymmetrically, only on one side of the cell, and progresses into a helical pattern rather than into a constricting ring as in wild-type cells. This helical pattern of wall insertion leads to elongation, as in rod-shaped cells. Thus, structural flexibility of FtsZ filaments can result in an FtsZ-dependent mechanism for generating elongated cells from cocci.
The mechanisms by which bacteria generate and maintain even the simplest cell shape remain an elusive but fundamental question in microbiology. In the absence of examples of coccus-to-rod transitions, the spherical shape has been suggested to be an evolutionary dead end in morphogenesis. We describe the first observation of the generation of elongated cells from truly spherical cocci, occurring in a Staphylococcus aureus mutant containing a single point mutation in its genome, in the gene encoding the bacterial tubulin homologue FtsZ. We demonstrate that FtsZ-dependent cell elongation is possible, even in the absence of dedicated elongation machinery.
与更复杂的细菌形状相比,对于最简单的球形细菌细胞形状的确定和维持的机制理解仍然难以捉摸。球菌似乎缺乏专门的伸长机制,并且球形形状被认为是一种进化的终端形态,因为在细菌中从未观察到从球形到杆状形状的转变。在这里,我们表明表达ftsZ(G193D)等位基因的金黄色葡萄球菌突变体(M5)表现出细胞伸长。分子动力学模拟和体外研究表明,FtsZ(G193D)细丝比野生型细丝更扭曲且更短。在体内,M5细胞壁沉积仅在细胞的一侧不对称启动,并发展成螺旋模式,而不是像野生型细胞那样形成收缩环。这种壁插入的螺旋模式导致细胞伸长,就像在杆状细胞中一样。因此,FtsZ细丝的结构灵活性可以导致一种依赖FtsZ的机制,用于从球菌产生伸长的细胞。
细菌产生和维持即使是最简单的细胞形状的机制仍然是微生物学中一个难以捉摸但基本的问题。由于缺乏球菌到杆状转变的例子,球形形状被认为是形态发生中的进化终端。我们描述了首次观察到从真正的球形球菌产生伸长细胞的现象,这发生在金黄色葡萄球菌突变体中,该突变体在其基因组中编码细菌微管蛋白同源物FtsZ的基因中存在单点突变。我们证明,即使没有专门的伸长机制,依赖FtsZ的细胞伸长也是可能的。