Voronov Leonard I, Siemionow Krzysztof B, Havey Robert M, Carandang Gerard, Patwardhan Avinash G
Department of Orthopaedic Surgery and Rehabilitation, Loyola University Chicago, Maywood; Musculoskeletal Biomechanics Laboratory, Edward Hines Jr. VA Hospital, Hines.
Department of Orthopaedics, University of Illinois College of Medicine at Chicago, Chicago, IL, USA.
Med Devices (Auckl). 2016 Aug 23;9:285-90. doi: 10.2147/MDER.S111031. eCollection 2016.
Lateral mass screw (LMS) fixation with plates or rods is the current standard procedure for posterior cervical fusion. Recently, implants placed between the facet joints have become available as an alternative to LMS or transfacet screws for patients with cervical spondylotic radiculopathy. The purpose of this study was to evaluate the biomechanical stability of the DTRAX(®) cervical cage for single- and two-level fusion and compare this to the stability achieved with LMS fixation with rods in a two-level construct.
Six cadaveric cervical spine (C3-C7) specimens were tested in flexion-extension, lateral bending, and axial rotation to ±1.5 Nm moment without preload (0 N) in the following conditions: 1) intact (C3-C7), 2) LMS and rods at C4-C5 and C5-C6, 3) removal of all rods (LMS retained) and placement of bilateral posterior cages at C5-C6, 4) bilateral posterior cages at C4-C5 and C5-C6 (without LMS and rods), and 5) C4-C5 and C5-C6 bilateral posterior cages at C4-C5 and C5-C6 with rods reinserted.
Bilateral posterior cervical cages significantly reduced range of motion in all tested directions in both single- and multilevel constructs (P<0.05). Similar stability was achieved with bilateral posterior cages and LMS in a two-level construct: 0.6°±0.3° vs 1.2°±0.4° in flexion-extension (P=0.001), (5.0°±2.6° vs 3.1°±1.3°) in lateral bending (P=0.053), (1.3°±1.0° vs 2.2°±0.9°) in axial rotation (P=0.091) for posterior cages and LMS, respectively. Posterior cages, when placed as an adjunct to LMS, further reduced range of motion in a multilevel construct (P<0.05).
Bilateral posterior cages provide similar cervical segmental stability compared with a LMS and rod construct and may be an alternative surgical option for select patients. Furthermore, supplementation of a lateral mass construct with posterior cages increases cervical spine stability in single- and multilevel conditions.
使用钢板或棒进行侧块螺钉(LMS)固定是目前颈椎后路融合的标准手术方法。最近,对于患有神经根型颈椎病的患者,放置在小关节之间的植入物已成为LMS或经小关节螺钉的替代方案。本研究的目的是评估DTRAX®颈椎椎间融合器用于单节段和双节段融合的生物力学稳定性,并将其与双节段结构中LMS棒固定所达到的稳定性进行比较。
对六个尸体颈椎(C3-C7)标本在屈伸、侧弯和轴向旋转时施加±1.5 Nm力矩且无预载(0 N)的情况下进行测试,测试条件如下:1)完整状态(C3-C7);2)在C4-C5和C5-C6处进行LMS和棒固定;3)移除所有棒(保留LMS)并在C5-C6处放置双侧后路椎间融合器;4)在C4-C5和C5-C6处放置双侧后路椎间融合器(无LMS和棒);5)在C4-C5和C5-C6处放置双侧后路椎间融合器并重新插入棒。
双侧后路颈椎椎间融合器在单节段和多节段结构中均显著降低了所有测试方向的活动范围(P<0.05)。在双节段结构中,双侧后路椎间融合器和LMS达到了相似的稳定性:屈伸时分别为0.6°±0.3°和1.2°±0.4°(P = 0.001),侧弯时分别为(5.0°±2.6°和3.1°±1.3°)(P = 0.053),轴向旋转时分别为(1.3°±1.0°和2.2°±0.9°)(P = 0.091)。当作为LMS的辅助手段放置时,后路椎间融合器在多节段结构中进一步降低了活动范围(P<0.05)。
与LMS和棒结构相比,双侧后路椎间融合器提供了相似的颈椎节段稳定性,可能是部分患者的替代手术选择。此外,在单节段和多节段情况下,用后路椎间融合器补充侧块结构可增加颈椎稳定性。