Suppr超能文献

体素水平的功能连接组可以从稀疏时空点过程中的共激活有效地推导出来。

The Voxel-Wise Functional Connectome Can Be Efficiently Derived from Co-activations in a Sparse Spatio-Temporal Point-Process.

作者信息

Tagliazucchi Enzo, Siniatchkin Michael, Laufs Helmut, Chialvo Dante R

机构信息

Institute for Medical Psychology, Christian-Albrechts UniversityKiel, Germany; Department of Neurology and Brain Imaging Center, Goethe University Frankfurt am MainGermany; Department of Sleep and Cognition, Netherlands Institute for NeuroscienceAmsterdam, Netherlands.

Institute for Medical Psychology, Christian-Albrechts University Kiel, Germany.

出版信息

Front Neurosci. 2016 Aug 23;10:381. doi: 10.3389/fnins.2016.00381. eCollection 2016.

Abstract

Large efforts are currently under way to systematically map functional connectivity between all pairs of millimeter-scale brain regions based on large neuroimaging databases. The exploratory unraveling of this "functional connectome" based on functional Magnetic Resonance Imaging (fMRI) can benefit from a better understanding of the contributors to resting state functional connectivity. In this work, we introduce a sparse representation of fMRI data in the form of a discrete point-process encoding high-amplitude events in the blood oxygenation level-dependent (BOLD) signal and we show it contains sufficient information for the estimation of functional connectivity between all pairs of voxels. We validate this method by replicating results obtained with standard whole-brain voxel-wise linear correlation matrices in two datasets. In the first one (n = 71), we study the changes in node strength (a measure of network centrality) during deep sleep. The second is a large database (n = 1147) of subjects in which we look at the age-related reorganization of the voxel-wise network of functional connections. In both cases it is shown that the proposed method compares well with standard techniques, despite requiring only data on the order of 1% of the original BOLD signal time series. Furthermore, we establish that the point-process approach does not reduce (and in one case increases) classification accuracy compared to standard linear correlations. Our results show how large fMRI datasets can be drastically simplified to include only the timings of large-amplitude events, while still allowing the recovery of all pair-wise interactions between voxels. The practical importance of this dimensionality reduction is manifest in the increasing number of collaborative efforts aiming to study large cohorts of healthy subjects as well as patients suffering from brain disease. Our method also suggests that the electrophysiological signals underlying the dynamics of fMRI time series consist of all-or-none temporally localized events, analogous to the avalanches of neural activity observed in recordings of local field potentials (LFP), an observation of potentially high neurobiological relevance.

摘要

目前正在做出巨大努力,基于大型神经影像数据库系统地绘制毫米级脑区之间的功能连接图。基于功能磁共振成像(fMRI)对这种“功能连接组”进行探索性解析,有助于更好地理解静息态功能连接的影响因素。在这项工作中,我们引入了一种fMRI数据的稀疏表示形式,即一种离散点过程,对血氧水平依赖(BOLD)信号中的高振幅事件进行编码,并表明它包含足以估计所有体素对之间功能连接的信息。我们通过在两个数据集中复制使用标准全脑体素级线性相关矩阵获得的结果来验证该方法。在第一个数据集(n = 71)中,我们研究深度睡眠期间节点强度(一种网络中心性度量)的变化。第二个是一个大型数据库(n = 1147),我们在其中观察功能连接的体素级网络与年龄相关的重组情况。在这两种情况下,结果均表明,尽管所提出的方法仅需要约1%的原始BOLD信号时间序列数据,但与标准技术相比仍具有良好的可比性。此外,我们确定,与标准线性相关性相比,点过程方法不会降低(在一种情况下还会提高)分类准确率。我们的结果表明,大型fMRI数据集可以大幅简化,仅包含高振幅事件的时间,同时仍能恢复体素之间的所有成对相互作用。这种降维的实际重要性体现在越来越多旨在研究大量健康受试者以及患有脑部疾病患者的合作研究中。我们的方法还表明,fMRI时间序列动态背后的电生理信号由全或无的时间局部化事件组成,类似于在局部场电位(LFP)记录中观察到的神经活动雪崩,这一观察结果可能具有高度的神经生物学相关性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d00/4994538/776957368ab4/fnins-10-00381-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验