Salgado Antonio, Chankvetadze Bezhan
Centro de Espectroscopía de RMN (CERMN), Faculty of Pharmacy, University of Alcalá, University Campus, 28805 Alcalá de Henares, Madrid, Spain.
Institute of Physical and Analytical Chemistry, School of Exact and Natural Sciences, Tbilisi State University, Chavchavadze Ave 3, 0179 Tbilisi, Georgia.
J Chromatogr A. 2016 Oct 7;1467:95-144. doi: 10.1016/j.chroma.2016.08.060. Epub 2016 Aug 31.
This review deals with the applications of nuclear magnetic resonance (NMR) spectroscopy to understand the mechanisms of chiral separation in capillary electrophoresis (CE). It is accepted that changes observed in the separation process, including the reversal of enantiomer migration order (EMO), can be caused by subtle modifications in the molecular recognition mechanisms between enantiomer and chiral selector. These modifications may imply minor structural differences in those selector-selectand complexes that arise from the above mentioned interactions. Therefore, it is mandatory to understand the fine intermolecular interactions between analytes and chiral selectors. In other words, it is necessary to know in detail the structures of the complexes formed by the enantiomer (selectand) and the selector. Any differences in the structures of these complexes arising from either enantiomer should be detected, so that enantiomeric bias in the separation process could be explained. As to the nature of these interactions, those have been extensively reviewed, and it is not intended to be discussed here. These interactions contemplate ionic, ion-dipole and dipole-dipole interactions, hydrogen bonding, van der Waals forces, π-π stacking, steric and hydrophobic interactions. The main subject of this review is to describe how NMR spectroscopy helps to gain insight into the non-covalent intermolecular interactions between selector and selectand that lead to enantiomer separation by CE. Examples in which diastereomeric species are created by covalent (irreversible) derivatization will not be considered here. This review is structured upon the different structural classes of chiral selectors employed in CE, in which NMR spectroscopy has made substantial contributions to rationalize the observed enantioseparations. Cases in which other techniques complement NMR spectroscopic data are also mentioned.
本综述探讨了核磁共振(NMR)光谱在理解毛细管电泳(CE)中手性分离机制方面的应用。人们认为,在分离过程中观察到的变化,包括对映体迁移顺序(EMO)的反转,可能是由于对映体与手性选择剂之间分子识别机制的细微改变所致。这些改变可能意味着上述相互作用产生的那些选择剂 - 被选择物复合物存在微小的结构差异。因此,必须了解分析物与手性选择剂之间精细的分子间相互作用。换句话说,有必要详细了解对映体(被选择物)与选择剂形成的复合物的结构。应该检测由任何一种对映体引起的这些复合物结构上的差异,以便解释分离过程中的对映体偏差。至于这些相互作用的性质,已有广泛的综述,此处不再赘述。这些相互作用包括离子、离子 - 偶极和偶极 - 偶极相互作用、氢键、范德华力、π - π堆积、空间和疏水相互作用。本综述的主要主题是描述NMR光谱如何有助于深入了解选择剂与被选择物之间的非共价分子间相互作用,这些相互作用导致了CE对映体分离。通过共价(不可逆)衍生化产生非对映体物种的例子在此不做考虑。本综述是根据CE中使用的手性选择剂的不同结构类别构建的,其中NMR光谱在合理化观察到的对映体分离方面做出了重大贡献。还提到了其他技术补充NMR光谱数据的情况。