Suppr超能文献

在黑腹果蝇遭受冷暴露期间,冷适应性会提高营养物质流动速率和代谢可塑性。

Cold adaptation increases rates of nutrient flow and metabolic plasticity during cold exposure in Drosophila melanogaster.

作者信息

Williams Caroline M, McCue Marshall D, Sunny Nishanth E, Szejner-Sigal Andre, Morgan Theodore J, Allison David B, Hahn Daniel A

机构信息

Department of Entomology and Nematology, University of Florida, Gainesville, FL 32611, USA Department of Integrative Biology, University of California, Berkeley, CA 94720, USA

Department of Biological Sciences, St Mary's University, San Antonio, TX 78228, USA.

出版信息

Proc Biol Sci. 2016 Sep 14;283(1838). doi: 10.1098/rspb.2016.1317.

Abstract

Metabolic flexibility is an important component of adaptation to stressful environments, including thermal stress and latitudinal adaptation. A long history of population genetic studies suggest that selection on core metabolic enzymes may shape life histories by altering metabolic flux. However, the direct relationship between selection on thermal stress hardiness and metabolic flux has not previously been tested. We investigated flexibility of nutrient catabolism during cold stress in Drosophila melanogaster artificially selected for fast or slow recovery from chill coma (i.e. cold-hardy or -susceptible), specifically testing the hypothesis that stress adaptation increases metabolic turnover. Using (13)C-labelled glucose, we first showed that cold-hardy flies more rapidly incorporate ingested carbon into amino acids and newly synthesized glucose, permitting rapid synthesis of proline, a compound shown elsewhere to improve survival of cold stress. Second, using glucose and leucine tracers we showed that cold-hardy flies had higher oxidation rates than cold-susceptible flies before cold exposure, similar oxidation rates during cold exposure, and returned to higher oxidation rates during recovery. Additionally, cold-hardy flies transferred compounds among body pools more rapidly during cold exposure and recovery. Increased metabolic turnover may allow cold-adapted flies to better prepare for, resist and repair/tolerate cold damage. This work illustrates for the first time differences in nutrient fluxes associated with cold adaptation, suggesting that metabolic costs associated with cold hardiness could invoke resource-based trade-offs that shape life histories.

摘要

代谢灵活性是适应压力环境(包括热应激和纬度适应)的一个重要组成部分。长期以来的群体遗传学研究表明,对核心代谢酶的选择可能通过改变代谢通量来塑造生活史。然而,热应激耐受性选择与代谢通量之间的直接关系此前尚未得到检验。我们研究了在黑腹果蝇中,经人工选择从冷昏迷中快速或缓慢恢复(即耐寒或敏感)的果蝇在冷应激期间营养物质分解代谢的灵活性,特别检验了应激适应会增加代谢周转率这一假设。使用(13)C标记的葡萄糖,我们首先表明,耐寒果蝇能更快地将摄入的碳纳入氨基酸和新合成的葡萄糖中,从而允许快速合成脯氨酸,脯氨酸在其他地方已被证明可提高冷应激的存活率。其次,使用葡萄糖和亮氨酸示踪剂,我们表明耐寒果蝇在冷暴露前的氧化率高于敏感果蝇,在冷暴露期间氧化率相似,并且在恢复期间恢复到较高的氧化率。此外,耐寒果蝇在冷暴露和恢复期间在身体各库之间转移化合物的速度更快。增加的代谢周转率可能使适应寒冷的果蝇更好地为冷损伤做准备、抵抗冷损伤并修复/耐受冷损伤。这项工作首次说明了与冷适应相关的营养物质通量差异,表明与耐寒性相关的代谢成本可能引发基于资源的权衡,从而塑造生活史。

相似文献

2
Cold adaptation does not alter ATP homeostasis during cold exposure in Drosophila melanogaster.
Integr Zool. 2018 Jul;13(4):471-481. doi: 10.1111/1749-4877.12326.
3
Cold adaptation shapes the robustness of metabolic networks in Drosophila melanogaster.
Evolution. 2014 Dec;68(12):3505-23. doi: 10.1111/evo.12541. Epub 2014 Nov 20.
4
Adaptation to Low Temperature Exposure Increases Metabolic Rates Independently of Growth Rates.
Integr Comp Biol. 2016 Jul;56(1):62-72. doi: 10.1093/icb/icw009. Epub 2016 Apr 21.
7
Artificial selection on chill-coma recovery time in Drosophila melanogaster: Direct and correlated responses to selection.
J Therm Biol. 2016 Jul;59:77-85. doi: 10.1016/j.jtherbio.2016.04.004. Epub 2016 Apr 22.
8
Brief carbon dioxide exposure blocks heat hardening but not cold acclimation in Drosophila melanogaster.
J Insect Physiol. 2008 Jan;54(1):32-40. doi: 10.1016/j.jinsphys.2007.08.001. Epub 2007 Aug 10.
9
The effects of carbon dioxide anesthesia and anoxia on rapid cold-hardening and chill coma recovery in Drosophila melanogaster.
J Insect Physiol. 2006 Oct;52(10):1027-33. doi: 10.1016/j.jinsphys.2006.07.001. Epub 2006 Jul 27.
10
Complexity of the cold acclimation response in Drosophila melanogaster.
J Insect Physiol. 2006 Jan;52(1):94-104. doi: 10.1016/j.jinsphys.2005.09.007. Epub 2005 Oct 28.

引用本文的文献

1
Senescence and early-life performance as predictors of lifespan in a solitary bee.
Proc Biol Sci. 2025 Apr;292(2045):20242637. doi: 10.1098/rspb.2024.2637. Epub 2025 Apr 16.
3
Systemic analysis shows that cold exposure modulates triglyceride accumulation and phospholipid distribution in mice.
PLoS One. 2024 Nov 7;19(11):e0313205. doi: 10.1371/journal.pone.0313205. eCollection 2024.
4
Molecular Challenges and Opportunities in Climate Change-Induced Kidney Diseases.
Biomolecules. 2024 Feb 21;14(3):251. doi: 10.3390/biom14030251.
5
Transcriptomic Response of Differentiating Porcine Myotubes to Thermal Stress and Donor Piglet Age.
Int J Mol Sci. 2023 Sep 2;24(17):13599. doi: 10.3390/ijms241713599.
7
Mitochondria as a target and central hub of energy division during cold stress in insects.
Front Zool. 2022 Jan 6;19(1):1. doi: 10.1186/s12983-021-00448-3.
8
Sestrin regulates acute chill coma recovery in Drosophila melanogaster.
Insect Biochem Mol Biol. 2021 Jun;133:103548. doi: 10.1016/j.ibmb.2021.103548. Epub 2021 Feb 4.

本文引用的文献

1
Artificial selection on chill-coma recovery time in Drosophila melanogaster: Direct and correlated responses to selection.
J Therm Biol. 2016 Jul;59:77-85. doi: 10.1016/j.jtherbio.2016.04.004. Epub 2016 Apr 22.
2
Adaptation to Low Temperature Exposure Increases Metabolic Rates Independently of Growth Rates.
Integr Comp Biol. 2016 Jul;56(1):62-72. doi: 10.1093/icb/icw009. Epub 2016 Apr 21.
3
(13)C-Breath testing in animals: theory, applications, and future directions.
J Comp Physiol B. 2016 Apr;186(3):265-85. doi: 10.1007/s00360-015-0950-4. Epub 2015 Dec 11.
4
Carbon stable-isotope tracking in breath for comparative studies of fuel use.
Ann N Y Acad Sci. 2016 Feb;1365(1):15-32. doi: 10.1111/nyas.12737. Epub 2015 Mar 27.
5
Sodium distribution predicts the chill tolerance of Drosophila melanogaster raised in different thermal conditions.
Am J Physiol Regul Integr Comp Physiol. 2015 May 15;308(10):R823-31. doi: 10.1152/ajpregu.00465.2014. Epub 2015 Mar 11.
6
Cold adaptation shapes the robustness of metabolic networks in Drosophila melanogaster.
Evolution. 2014 Dec;68(12):3505-23. doi: 10.1111/evo.12541. Epub 2014 Nov 20.
7
Is metabolic rate a universal 'pacemaker' for biological processes?
Biol Rev Camb Philos Soc. 2015 May;90(2):377-407. doi: 10.1111/brv.12115. Epub 2014 May 23.
10
Molecular basis of chill resistance adaptations in poikilothermic animals.
J Exp Biol. 2014 Jan 1;217(Pt 1):6-15. doi: 10.1242/jeb.096537.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验