Suppr超能文献

利用红树林植物(白骨壤)提取物生物合成银纳米颗粒及其潜在的杀蚊幼虫特性。

Biosynthesis of silver nanoparticles from mangrove plant (Avicennia marina) extract and their potential mosquito larvicidal property.

作者信息

Balakrishnan Srinivasan, Srinivasan Muthukumarasamy, Mohanraj Jeyaraj

机构信息

Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502 Tamil Nadu India ; Marine Gastropod Hatchery & Research Laboratory, Department of Zoology, Kamaraj College, Manonmaniam Sundaranar University, Tuticorin, 628 003 Tamil Nadu India.

Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502 Tamil Nadu India.

出版信息

J Parasit Dis. 2016 Sep;40(3):991-6. doi: 10.1007/s12639-014-0621-5. Epub 2014 Nov 30.

Abstract

To identify the larvicidal activities of silver nanoparticles synthesised with Avicennia marina leaf extract against the larvae of Aedes aegypti and Anopheleus stephensi, in vitro larvicidal activities such as LC50 and LC90 were assessed. Further, characterisation such as UV and FTIR analysis were carried out for the synthesised silver nanoparticles. The LC50 value of the synthesised silver nanoparticles was identified as 4.374 and 7.406 mg/L for An. stephensi and Ae. aegypti larvae respectively. Further, the LC90 values are also identified as 4.928 and 9.865 mg/L for An. stephensi and Ae. aegypti species respectively. The synthesised silver nanoparticles have maximum absorption at 420 nm with the average size of 60-95 nm. The FTIR data showed prominent peaks in (3940.57, 3929.00, 3803.63, 3712.97, 2918.30, 2231.64, 1610.50, 1377.17, 1257.59, 1041.59, 1041.56, 775.38, 667.37 and 503.21) different ranges. The biosynthesis of silver nanoparticles with leaf aqueous extract of A. marina provides potential source for the larvicidal activity against mosquito borne diseases. The present study proved the mosquitocidal properties of silver nanoparticles synthesised from mangroves of Vellar estuary. This is an ideal eco-friendly approach for the vector control programs.

摘要

为了鉴定用白骨壤叶提取物合成的银纳米颗粒对埃及伊蚊和斯氏按蚊幼虫的杀幼虫活性,评估了诸如半数致死浓度(LC50)和九成致死浓度(LC90)等体外杀幼虫活性。此外,对合成的银纳米颗粒进行了紫外和傅里叶变换红外光谱(FTIR)分析等表征。合成的银纳米颗粒对斯氏按蚊和埃及伊蚊幼虫的LC50值分别确定为4.374和7.406毫克/升。此外,斯氏按蚊和埃及伊蚊的LC90值也分别确定为4.928和9.865毫克/升。合成的银纳米颗粒在420纳米处有最大吸收,平均粒径为60 - 95纳米。FTIR数据显示在(3940.57、3929.00、3803.63、3712.97、2918.30、2231.64、1610.50、1377.17、1257.59、1041.59、1041.56、775.38、667.37和503.21)不同范围内有明显峰值。用白骨壤叶水提取物生物合成银纳米颗粒为针对蚊媒疾病的杀幼虫活性提供了潜在来源。本研究证明了从韦拉尔河口红树林合成的银纳米颗粒的灭蚊特性。这是病媒控制项目的一种理想的生态友好方法。

相似文献

3
Biosynthesis of silver nanoparticles by using mangrove plant extract and their potential mosquito larvicidal property.
Asian Pac J Trop Med. 2011 Oct;4(10):799-803. doi: 10.1016/S1995-7645(11)60197-1.

引用本文的文献

1
A comprehensive review on the green synthesis of silver nanoparticles from marine sources.
Naunyn Schmiedebergs Arch Pharmacol. 2025 Apr;398(4):3409-3432. doi: 10.1007/s00210-024-03547-0. Epub 2024 Nov 19.
6
7
Mixed phytochemicals mediated synthesis of copper nanoparticles for anticancer and larvicidal applications.
Heliyon. 2021 Jun 22;7(6):e07360. doi: 10.1016/j.heliyon.2021.e07360. eCollection 2021 Jun.
8
Evaluation of Phytochemicals and Bioactive Properties in Mangrove Associate . ex J.F.Gmel. of Indian Sundarbans.
Front Pharmacol. 2021 Mar 10;12:584019. doi: 10.3389/fphar.2021.584019. eCollection 2021.
9
Larvicidal potency of marine actinobacteria isolated from mangrove environment against and .
J Parasit Dis. 2017 Jun;41(2):387-394. doi: 10.1007/s12639-016-0812-3. Epub 2016 Jul 6.
10
Larvicidal activity of green synthesized silver nanoparticles using L. (Euphorbiaceae) leaf extract against .
IET Nanobiotechnol. 2016 Dec;10(6):382-388. doi: 10.1049/iet-nbt.2015.0101.

本文引用的文献

1
Mosquitocidal properties of Bacillus species isolated from mangroves of Vellar estuary, Southeast coast of India.
J Parasit Dis. 2015 Sep;39(3):385-92. doi: 10.1007/s12639-013-0371-9. Epub 2013 Nov 1.
2
Bioactivity of seagrass against the dengue fever mosquito Aedes aegypti larvae.
Asian Pac J Trop Biomed. 2012 Jul;2(7):570-3. doi: 10.1016/S2221-1691(12)60099-9.
3
Biofabrication of Ag nanoparticles using Moringa oleifera leaf extract and their antimicrobial activity.
Asian Pac J Trop Biomed. 2011 Dec;1(6):439-42. doi: 10.1016/S2221-1691(11)60096-8.
4
Catharanthus roseus: a natural source for the synthesis of silver nanoparticles.
Asian Pac J Trop Biomed. 2011 Aug;1(4):270-4. doi: 10.1016/S2221-1691(11)60041-5.
6
Synthesis of antimicrobial silver nanoparticles by callus and leaf extracts from saltmarsh plant, Sesuvium portulacastrum L.
Colloids Surf B Biointerfaces. 2010 Sep 1;79(2):488-93. doi: 10.1016/j.colsurfb.2010.05.018.
7
Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment.
Colloids Surf B Biointerfaces. 2009 Jun 1;71(1):133-7. doi: 10.1016/j.colsurfb.2009.01.016. Epub 2009 Jan 31.
8
Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing.
Ecotoxicology. 2008 Jul;17(5):387-95. doi: 10.1007/s10646-008-0208-y. Epub 2008 Apr 19.
9
The effects of nano-silver on the proliferation and cytokine expression by peripheral blood mononuclear cells.
Int Immunopharmacol. 2007 Dec 15;7(13):1813-8. doi: 10.1016/j.intimp.2007.08.025. Epub 2007 Sep 21.
10
One-step fabrication of silver nanoparticle embedded polymer nanofibers by radical-mediated dispersion polymerization.
Chem Commun (Camb). 2006 Jul 28(28):3010-2. doi: 10.1039/b605286j. Epub 2006 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验