Suppr超能文献

用于骨修复的可注射磷酸钙与包裹诱导多能干细胞、牙髓干细胞和骨髓干细胞的水凝胶纤维。

Injectable calcium phosphate with hydrogel fibers encapsulating induced pluripotent, dental pulp and bone marrow stem cells for bone repair.

作者信息

Wang Lin, Zhang Chi, Li Chunyan, Weir Michael D, Wang Ping, Reynolds Mark A, Zhao Liang, Xu Hockin H K

机构信息

VIP Integrated Department, School and Hospital of Stomatology, Jilin University, Changchun, Jilin 130011,China; Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA.

Department of Endodontics, Periodontics and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, USA; State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China.

出版信息

Mater Sci Eng C Mater Biol Appl. 2016 Dec 1;69:1125-36. doi: 10.1016/j.msec.2016.08.019. Epub 2016 Aug 10.

Abstract

Human induced pluripotent stem cell-derived mesenchymal stem cells (hiPSC-MSCs), dental pulp stem cells (hDPSCs) and bone marrow MSCs (hBMSCs) are exciting cell sources in regenerative medicine. However, there has been no report comparing hDPSCs, hBMSCs and hiPSC-MSCs for bone engineering in an injectable calcium phosphate cement (CPC) scaffold. The objectives of this study were to: (1) develop a novel injectable CPC containing hydrogel fibers encapsulating stem cells for bone engineering, and (2) compare cell viability, proliferation and osteogenic differentiation of hDPSCs, hiPSC-MSCs from bone marrow (BM-hiPSC-MSCs) and from foreskin (FS-hiPSC-MSCs), and hBMSCs in CPC for the first time. The results showed that the injection did not harm cell viability. The porosity of injectable CPC was 62%. All four types of cells proliferated and differentiated down the osteogenic lineage inside hydrogel fibers in CPC. hDPSCs, BM-hiPSC-MSCs, and hBMSCs exhibited high alkaline phosphatase, runt-related transcription factor, collagen I, and osteocalcin gene expressions. Cell-synthesized minerals increased with time (p<0.05), with no significant difference among hDPSCs, BM-hiPSC-MSCs and hBMSCs (p>0.1). Mineralization by hDPSCs, BM-hiPSC-MSCs, and hBMSCs inside CPC at 14d was 14-fold that at 1d. FS-hiPSC-MSCs were inferior in osteogenic differentiation compared to the other cells. In conclusion, hDPSCs, BM-hiPSC-MSCs and hBMSCs are similarly and highly promising for bone tissue engineering; however, FS-hiPSC-MSCs were relatively inferior in osteogenesis. The novel injectable CPC with cell-encapsulating hydrogel fibers may enhance bone regeneration in dental, craniofacial and orthopedic applications.

摘要

人诱导多能干细胞来源的间充质干细胞(hiPSC-MSCs)、牙髓干细胞(hDPSCs)和骨髓间充质干细胞(hBMSCs)是再生医学中令人兴奋的细胞来源。然而,尚无关于在可注射磷酸钙骨水泥(CPC)支架中比较hDPSCs、hBMSCs和hiPSC-MSCs用于骨工程的报道。本研究的目的是:(1)开发一种新型的可注射CPC,其包含包裹干细胞的水凝胶纤维用于骨工程,以及(2)首次比较hDPSCs、来自骨髓的hiPSC-MSCs(BM-hiPSC-MSCs)、来自包皮的hiPSC-MSCs(FS-hiPSC-MSCs)和hBMSCs在CPC中的细胞活力、增殖和成骨分化。结果表明,注射不会损害细胞活力。可注射CPC的孔隙率为62%。所有四种类型的细胞在CPC的水凝胶纤维内增殖并沿成骨谱系分化。hDPSCs、BM-hiPSC-MSCs和hBMSCs表现出高碱性磷酸酶、 runt相关转录因子、I型胶原蛋白和骨钙素基因表达。细胞合成的矿物质随时间增加(p<0.05),hDPSCs、BM-hiPSC-MSCs和hBMSCs之间无显著差异(p>0.1)。14天时,hDPSCs、BM-hiPSC-MSCs和hBMSCs在CPC内的矿化是1天时的14倍。与其他细胞相比,FS-hiPSC-MSCs的成骨分化较差。总之,hDPSCs、BM-hiPSC-MSCs和hBMSCs在骨组织工程方面同样具有很高的前景;然而,FS-hiPSC-MSCs在成骨方面相对较差。具有包裹细胞的水凝胶纤维的新型可注射CPC可能会增强牙科、颅面和骨科应用中的骨再生。

相似文献

1
Injectable calcium phosphate with hydrogel fibers encapsulating induced pluripotent, dental pulp and bone marrow stem cells for bone repair.
Mater Sci Eng C Mater Biol Appl. 2016 Dec 1;69:1125-36. doi: 10.1016/j.msec.2016.08.019. Epub 2016 Aug 10.
3
Human bone marrow stem cell-encapsulating calcium phosphate scaffolds for bone repair.
Acta Biomater. 2010 Oct;6(10):4118-26. doi: 10.1016/j.actbio.2010.04.029. Epub 2010 May 6.
4
Comparative characterization of stem cells from human exfoliated deciduous teeth, dental pulp, and bone marrow-derived mesenchymal stem cells.
Biochem Biophys Res Commun. 2018 Jun 18;501(1):193-198. doi: 10.1016/j.bbrc.2018.04.213. Epub 2018 May 8.
7
An injectable calcium phosphate-alginate hydrogel-umbilical cord mesenchymal stem cell paste for bone tissue engineering.
Biomaterials. 2010 Sep;31(25):6502-10. doi: 10.1016/j.biomaterials.2010.05.017. Epub 2010 Jun 8.
8
Human induced pluripotent stem cell-derived mesenchymal stem cell seeding on calcium phosphate scaffold for bone regeneration.
Tissue Eng Part A. 2014 Apr;20(7-8):1295-305. doi: 10.1089/ten.TEA.2013.0211. Epub 2014 Jan 7.
10
Engineering bone regeneration with novel cell-laden hydrogel microfiber-injectable calcium phosphate scaffold.
Mater Sci Eng C Mater Biol Appl. 2017 Jun 1;75:895-905. doi: 10.1016/j.msec.2017.02.158. Epub 2017 Mar 1.

引用本文的文献

1
Novel L-(CaP-ZnP)/SA Nanocomposite Hydrogel with Dual Anti-Inflammatory and Mineralization Effects for Efficient Vital Pulp Therapy.
Int J Nanomedicine. 2024 Jul 3;19:6659-6676. doi: 10.2147/IJN.S464871. eCollection 2024.
2
Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions.
Signal Transduct Target Ther. 2024 Jul 1;9(1):166. doi: 10.1038/s41392-024-01852-x.
3
Repair of Infected Bone Defects with Hydrogel Materials.
Polymers (Basel). 2024 Jan 19;16(2):281. doi: 10.3390/polym16020281.
7
The current regenerative medicine approaches of craniofacial diseases: A narrative review.
Front Cell Dev Biol. 2023 Feb 28;11:1112378. doi: 10.3389/fcell.2023.1112378. eCollection 2023.
8
Periodontal ligament stem cell-based bioactive constructs for bone tissue engineering.
Front Bioeng Biotechnol. 2022 Dec 2;10:1071472. doi: 10.3389/fbioe.2022.1071472. eCollection 2022.
9
Close-to-native bone repair via tissue-engineered endochondral ossification approaches.
iScience. 2022 Oct 14;25(11):105370. doi: 10.1016/j.isci.2022.105370. eCollection 2022 Nov 18.

本文引用的文献

1
A self-setting iPSMSC-alginate-calcium phosphate paste for bone tissue engineering.
Dent Mater. 2016 Feb;32(2):252-63. doi: 10.1016/j.dental.2015.11.019. Epub 2015 Dec 29.
3
Bone tissue engineering via human induced pluripotent, umbilical cord and bone marrow mesenchymal stem cells in rat cranium.
Acta Biomater. 2015 May;18:236-48. doi: 10.1016/j.actbio.2015.02.011. Epub 2015 Feb 21.
4
Fabrication of endothelial cell-laden carrageenan microfibers for microvascularized bone tissue engineering applications.
Biomacromolecules. 2014 Aug 11;15(8):2849-60. doi: 10.1021/bm500036a. Epub 2014 Jul 8.
5
Directed differentiation of human induced pluripotent stem cells toward bone and cartilage: in vitro versus in vivo assays.
Stem Cells Transl Med. 2014 Jul;3(7):867-78. doi: 10.5966/sctm.2013-0154. Epub 2014 May 22.
6
Path to the clinic: assessment of iPSC-based cell therapies in vivo in a nonhuman primate model.
Cell Rep. 2014 May 22;7(4):1298-1309. doi: 10.1016/j.celrep.2014.04.019. Epub 2014 May 15.
7
Generation of functional mesenchymal stem cells from different induced pluripotent stem cell lines.
Stem Cells Dev. 2014 May 15;23(10):1084-96. doi: 10.1089/scd.2013.0111. Epub 2014 Feb 7.
8
Reprogramming of mesenchymal stem cells derived from iPSCs seeded on biofunctionalized calcium phosphate scaffold for bone engineering.
Biomaterials. 2013 Oct;34(32):7862-72. doi: 10.1016/j.biomaterials.2013.07.029. Epub 2013 Jul 24.
9
Engineering bone tissue substitutes from human induced pluripotent stem cells.
Proc Natl Acad Sci U S A. 2013 May 21;110(21):8680-5. doi: 10.1073/pnas.1301190110. Epub 2013 May 7.
10
Concise review: the clinical application of mesenchymal stem cells for musculoskeletal regeneration: current status and perspectives.
Stem Cells Transl Med. 2012 Mar;1(3):237-47. doi: 10.5966/sctm.2011-0036. Epub 2012 Feb 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验