Suppr超能文献

量化使用类推法和计算机模拟技术满足化学类别危害数据要求的益处。

Quantifying the benefits of using read-across and in silico techniques to fulfill hazard data requirements for chemical categories.

作者信息

Stanton Kathleen, Kruszewski Francis H

机构信息

Technical Department, American Cleaning Institute, 1331 L Street, NW, Suite 650, Washington, DC, USA.

出版信息

Regul Toxicol Pharmacol. 2016 Nov;81:250-259. doi: 10.1016/j.yrtph.2016.09.004. Epub 2016 Sep 7.

Abstract

Substantial benefits are realized through the use of read-across and in silico techniques to fill data gaps for structurally similar substances. Considerable experience in applying these techniques was gained under two voluntary high production volume (HPV) chemical programs - the International Council of Chemical Associations' (ICCA) Cooperative Chemicals Assessment Programme (with the cooperation of the Organization of Economic Cooperation and Development) and the U.S. Environmental Protection Agency's HPV Challenge Program. These programs led to the compilation and public availability of baseline sets of health and environmental effects data for thousands of chemicals. The American Cleaning Institute's (ACI) contribution to these national and global efforts included the compilation of these datasets for 261 substances. Chemicals that have structural similarities are likely to have similar environmental fate, physical-chemical and toxicological properties, which was confirmed by examining available data from across the range of substances within categories of structurally similar HPV chemicals. These similarities allowed the utilization of read-across, trend analysis techniques and qualitative structure activity relationship ((Q)SAR) tools to fill data gaps. This paper presents the first quantification of actual benefits resulting from avoided testing through the use of read-across and in silico tools. Specifically, in the evaluation of these 261 noted substances, the use of 100,000-150,000 test animals and the expenditures of $50,000,000 to $70,000,000 (US) were avoided.

摘要

通过使用类推法和计算机模拟技术来填补结构相似物质的数据空白,可实现显著效益。在两项自愿性高产量(HPV)化学品计划下,积累了应用这些技术的丰富经验,这两项计划分别是国际化学品协会理事会(ICCA)的化学品合作评估计划(与经济合作与发展组织合作)以及美国环境保护局的HPV挑战计划。这些计划促成了数千种化学品健康与环境影响数据基线集的汇编并向公众提供。美国清洁协会(ACI)对这些国家和全球努力的贡献包括为261种物质汇编这些数据集。结构相似的化学品可能具有相似的环境归宿、物理化学和毒理学特性,这一点通过检查结构相似的HPV化学品类别中各类物质的现有数据得到了证实。这些相似性使得能够利用类推法、趋势分析技术和定性构效关系((Q)SAR)工具来填补数据空白。本文首次对通过使用类推法和计算机模拟工具避免测试所产生的实际效益进行了量化。具体而言,在对这261种所述物质的评估中,避免了使用100,000 - 150,000只实验动物以及5000万至7000万美元(美国)的支出。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验